merge pull request in new branch

This commit is contained in:
John Smith 2023-04-07 10:40:24 +08:00
commit 9351f49542
8 changed files with 476 additions and 228 deletions

View File

@ -97,5 +97,6 @@ class Finetune4bConfig:
f"{self.warmup_steps=}\n{self.save_steps=}\n{self.save_total_limit=}\n" +\
f"{self.logging_steps=}\n" +\
f"{self.checkpoint=}\n{self.skip=}\n" +\
f"{self.world_size=}\n{self.ddp=}\n{self.device_map=}"
f"{self.world_size=}\n{self.ddp=}\n{self.device_map=}\n" +\
f"{self.groupsize=}\n"
return s.replace("self.", "")

View File

@ -35,10 +35,20 @@ pip install -r requirements.txt
~The same finetune script from https://github.com/tloen/alpaca-lora can be used.~<br>
After installation, this script can be used:
GPTQv1:
```
python finetune.py
```
or
```
GPTQ_VERSION=1 python finetune.py
```
GPTQv2:
```
GPTQ_VERSION=2 python finetune.py
```
# Inference

21
autograd_4bit/__init__.py Normal file
View File

@ -0,0 +1,21 @@
import os
from colorama import init, Fore, Back, Style
init(autoreset=True)
try:
GPTQ_VERSION = int(os.environ["GPTQ_VERSION"])
except:
print(Style.BRIGHT + Fore.YELLOW + "GPTQ_VERSION environment not provided. Fallback to GPTQv1")
GPTQ_VERSION = 1 # Fallback version
loader = None
if GPTQ_VERSION == 1:
from .autograd_4bit_v1 import Autograd4bitQuantLinear, load_llama_model_4bit_low_ram
print(Style.BRIGHT + Fore.GREEN + "GPTQv1 set")
elif GPTQ_VERSION == 2:
from .autograd_4bit_v2 import Autograd4bitQuantLinear, load_llama_model_4bit_low_ram
print(Style.BRIGHT + Fore.GREEN + "GPTQv2 set")
else:
raise ValueError("GPTQ_VERSION not set or invalid")

View File

@ -2,7 +2,6 @@ import matmul_utils_4bit as mm4b
import torch
import torch.nn as nn
import time
import math
class AutogradMatmul4bit(torch.autograd.Function):
@ -32,25 +31,17 @@ class AutogradMatmul4bit(torch.autograd.Function):
# Assumes layer is perfectly divisible into 256 * 256 blocks
class Autograd4bitQuantLinear(nn.Module):
def __init__(self, infeatures, outfeatures, groupsize=-1):
def __init__(self, in_features, out_features, groupsize=None):
super().__init__()
bits = 4
self.in_features = infeatures
self.out_features = outfeatures
self.in_features = in_features
self.out_features = out_features
self.bits = bits
self.groupsize = groupsize
if groupsize == -1:
self.register_buffer('zeros', torch.empty((outfeatures, 1)))
self.register_buffer('scales', torch.empty((outfeatures, 1)))
else:
self.register_buffer('qzeros',
torch.empty((math.ceil(infeatures/groupsize), outfeatures // 256 * (bits * 8)), dtype=torch.int)
)
self.register_buffer('scales', torch.empty((math.ceil(infeatures/groupsize), outfeatures)))
self.register_buffer('g_idx', torch.tensor([i // self.groupsize for i in range(infeatures)], dtype = torch.int32))
self.register_buffer('bias', torch.empty(outfeatures))
self.register_buffer('zeros', torch.empty((out_features, 1)))
self.register_buffer('scales', torch.empty((out_features, 1)))
self.bias = nn.Parameter(torch.empty(out_features))
self.register_buffer(
'qweight', torch.empty((infeatures // 256 * (bits * 8), outfeatures), dtype=torch.int)
'qweight', torch.empty((in_features // 256 * (bits * 8), out_features), dtype=torch.int)
)
@ -84,8 +75,7 @@ def model_to_half(model):
model.half()
for n, m in model.named_modules():
if isinstance(m, Autograd4bitQuantLinear):
if m.groupsize == -1:
m.zeros = m.zeros.half()
m.zeros = m.zeros.half()
m.scales = m.scales.half()
m.bias = m.bias.half()
print('Converted as Half.')
@ -95,8 +85,7 @@ def model_to_float(model):
model.float()
for n, m in model.named_modules():
if isinstance(m, Autograd4bitQuantLinear):
if m.groupsize == -1:
m.zeros = m.zeros.float()
m.zeros = m.zeros.float()
m.scales = m.scales.float()
m.bias = m.bias.float()
print('Converted as Float.')
@ -187,8 +176,7 @@ def load_llama_model_4bit_low_ram_and_offload_to_cpu(config_path, model_path, lo
print('Apply half ...')
for n, m in model.named_modules():
if isinstance(m, Autograd4bitQuantLinear) or ((lora_path is not None) and isinstance(m, Linear4bitLt)):
if m.groupsize == -1:
m.zeros = m.zeros.half()
m.zeros = m.zeros.half()
m.scales = m.scales.half()
m.bias = m.bias.half()

View File

@ -0,0 +1,221 @@
from colorama import init, Fore, Back, Style
import torch
import torch.nn as nn
import time
import math
import triton
from triton_utils import matmul_248_kernel, trans_matmul_248_kernel
class AutogradMatmul4bit(torch.autograd.Function):
@staticmethod
def forward(ctx, input, qweight, scales, qzeros, g_idx, bits, maxq):
output = torch.empty((input.shape[0], qweight.shape[1]), device='cuda', dtype=torch.float16)
grid = lambda META: (triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(qweight.shape[1], META['BLOCK_SIZE_N']),)
matmul_248_kernel[grid](input, qweight, output,
scales, qzeros, g_idx,
input.shape[0], qweight.shape[1], input.shape[1], bits, maxq,
input.stride(0), input.stride(1),
qweight.stride(0), qweight.stride(1),
output.stride(0), output.stride(1),
scales.stride(0), qzeros.stride(0))
ctx.save_for_backward(qweight, scales, qzeros, g_idx)
ctx.input_shape, ctx.bits,ctx.maxq = input.shape,bits, maxq
return output
@staticmethod
def backward(ctx, grad_output):
input_shape, bits, maxq = ctx.input_shape, ctx.bits, ctx.maxq
qweight, scales, qzeros, g_idx = ctx.saved_tensors
grade_input = None
if ctx.needs_input_grad[0]:
grade_input = torch.empty((input_shape[0], input_shape[1]), device='cuda', dtype=torch.float32)
grid = lambda META: (triton.cdiv(input_shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(input_shape[1], META['BLOCK_SIZE_K']),)
trans_matmul_248_kernel[grid](grad_output, qweight, grade_input,
scales, qzeros, g_idx,
input_shape[0], qweight.shape[1], input_shape[1], bits, maxq,
grad_output.stride(0), grad_output.stride(1),
qweight.stride(0), qweight.stride(1),
grade_input.stride(0), grade_input.stride(1),
scales.stride(0), qzeros.stride(0))
return grade_input, None, None, None, None, None, None
class Autograd4bitQuantLinear(nn.Module):
def __init__(self, in_features, out_features, groupsize, bias=True):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.bits = 4 # Hardcoded 4-bits quantizations
self.maxq = 2 ** self.bits - 1
self.groupsize = groupsize if groupsize != -1 else in_features
self.register_buffer('qweight', torch.zeros((in_features // 32 * self.bits, out_features), dtype=torch.int32))
self.register_buffer('qzeros', torch.zeros((math.ceil(in_features / self.groupsize), out_features // 32 * self.bits), dtype=torch.int32))
self.register_buffer('scales', torch.zeros((math.ceil(in_features / self.groupsize), out_features), dtype=torch.float16))
self.register_buffer('g_idx', torch.tensor([i // self.groupsize for i in range(in_features)], dtype = torch.int32))
if bias:
self.register_buffer('bias', torch.zeros(out_features,dtype=torch.float16))
else:
self.bias = None
def forward(self, x):
out_shape = x.shape[:-1] + (self.out_features, )
out = AutogradMatmul4bit.apply(x.reshape(-1,x.shape[-1]), self.qweight, self.scales,
self.qzeros, self.g_idx, self.bits, self.maxq)
out = out + self.bias if self.bias is not None else out
return out.reshape(out_shape)
def make_quant_for_4bit_autograd(module, names, name='', groupsize=-1):
if isinstance(module, Autograd4bitQuantLinear):
return
for attr in dir(module):
tmp = getattr(module, attr)
name1 = name + '.' + attr if name != '' else attr
if name1 in names:
setattr(
module, attr, Autograd4bitQuantLinear(tmp.in_features, tmp.out_features, groupsize=groupsize)
)
for name1, child in module.named_children():
make_quant_for_4bit_autograd(child, names, name + '.' + name1 if name != '' else name1, groupsize=groupsize)
def model_to_half(model):
model.half()
for n, m in model.named_modules():
if isinstance(m, Autograd4bitQuantLinear):
m.qzeros = m.qzeros.half()
m.scales = m.scales.half()
m.bias = m.bias.half()
print(Style.BRIGHT + Fore.YELLOW + 'Converted as Half.')
def model_to_float(model):
model.float()
for n, m in model.named_modules():
if isinstance(m, Autograd4bitQuantLinear):
m.qzeros = m.qzeros.float()
m.scales = m.scales.float()
m.bias = m.bias.float()
print(Style.BRIGHT + Fore.YELLOW + 'Converted as Float.')
def find_layers(module, layers=[nn.Conv2d, nn.Linear], name=''):
if type(module) in layers:
return {name: module}
res = {}
for name1, child in module.named_children():
res.update(find_layers(
child, layers=layers, name=name + '.' + name1 if name != '' else name1
))
return res
def load_llama_model_4bit_low_ram(config_path, model_path, groupsize=-1, half=False, device_map="auto", seqlen=2048):
import accelerate
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
print(Style.BRIGHT + Fore.CYAN + "Loading Model ...")
t0 = time.time()
with accelerate.init_empty_weights():
config = LlamaConfig.from_pretrained(config_path)
model = LlamaForCausalLM(config)
model = model.eval()
layers = find_layers(model)
for name in ['lm_head']:
if name in layers:
del layers[name]
make_quant_for_4bit_autograd(model, layers, groupsize=groupsize)
model = accelerate.load_checkpoint_and_dispatch(
model=model,
checkpoint=model_path,
device_map=device_map,
no_split_module_classes=["LlamaDecoderLayer"]
)
model.seqlen = seqlen
if half:
model_to_half(model)
tokenizer = LlamaTokenizer.from_pretrained(config_path)
tokenizer.truncation_side = 'left'
print(Style.BRIGHT + Fore.GREEN + f"Loaded the model in {(time.time()-t0):.2f} seconds.")
return model, tokenizer
def load_llama_model_4bit_low_ram_and_offload_to_cpu(config_path, model_path, lora_path=None, groupsize=-1, seqlen=2048, max_memory=None):
import accelerate
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
if max_memory is None:
max_memory = {0: '24Gib', 'cpu': '48Gib'}
print(Style.BRIGHT + Fore.CYAN + "Loading Model ...")
t0 = time.time()
with accelerate.init_empty_weights():
config = LlamaConfig.from_pretrained(config_path)
model = LlamaForCausalLM(config)
model = model.eval()
layers = find_layers(model)
for name in ['lm_head']:
if name in layers:
del layers[name]
make_quant_for_4bit_autograd(model, layers, groupsize=groupsize)
accelerate.load_checkpoint_in_model(model, checkpoint=model_path, device_map={'': 'cpu'})
# rotary_emb fix
for n, m in model.named_modules():
if 'rotary_emb' in n:
cos_cached = m.cos_cached.clone().cpu()
sin_cached = m.sin_cached.clone().cpu()
break
if lora_path is not None:
from peft import PeftModel
from peft.tuners.lora import Linear4bitLt
model = PeftModel.from_pretrained(model, lora_path, device_map={'': 'cpu'}, torch_dtype=torch.float32)
print(Style.BRIGHT + Fore.GREEN + '{} Lora Applied.'.format(lora_path))
model.seqlen = seqlen
print('Apply half ...')
for n, m in model.named_modules():
if isinstance(m, Autograd4bitQuantLinear) or ((lora_path is not None) and isinstance(m, Linear4bitLt)):
m.qzeros = m.qzeros.half()
m.scales = m.scales.half()
m.bias = m.bias.half()
print('Dispatching model ...')
device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LlamaDecoderLayer"])
model = accelerate.dispatch_model(model, device_map=device_map, offload_buffers=True, main_device=0)
torch.cuda.empty_cache()
print(Style.BRIGHT + Fore.YELLOW + 'Total {:.2f} Gib VRAM used.'.format(torch.cuda.memory_allocated() / 1024 / 1024))
# rotary_emb fix
for n, m in model.named_modules():
if 'rotary_emb' in n:
if getattr(m, '_hf_hook', None):
if isinstance(m._hf_hook, accelerate.hooks.SequentialHook):
hooks = m._hf_hook.hooks
else:
hooks = [m._hf_hook]
for hook in hooks:
if hook.offload:
if n + '.sin_cached' not in hook.weights_map.dataset.state_dict.keys():
hook.weights_map.dataset.state_dict[n + '.sin_cached'] = sin_cached.clone().cpu()
hook.weights_map.dataset.state_dict[n + '.cos_cached'] = cos_cached.clone().cpu()
tokenizer = LlamaTokenizer.from_pretrained(config_path)
tokenizer.truncation_side = 'left'
print(Style.BRIGHT + Fore.GREEN + f"Loaded the model in {(time.time()-t0):.2f} seconds.")
return model, tokenizer

View File

@ -115,6 +115,7 @@ if not ft_config.skip:
per_device_train_batch_size=ft_config.mbatch_size,
gradient_accumulation_steps=ft_config.gradient_accumulation_steps,
warmup_steps=ft_config.warmup_steps,
optim="adamw_torch",
num_train_epochs=ft_config.epochs,
learning_rate=ft_config.lr,
fp16=True,

View File

@ -5,6 +5,7 @@ datasets
sentencepiece
safetensors
flash-attn
triton
git+https://github.com/huggingface/transformers.git
git+https://github.com/sterlind/GPTQ-for-LLaMa.git@lora_4bit
git+https://github.com/sterlind/peft.git

View File

@ -1,205 +1,210 @@
import triton
import triton.language as tl
import torch
# code based https://github.com/fpgaminer/GPTQ-triton
@triton.autotune(
configs=[
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8),
triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8),
triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2),
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2),
],
key=['M', 'N', 'K'],
)
@triton.jit
def matmul_248_kernel(a_ptr, b_ptr, c_ptr,
scales_ptr, zeros_ptr, g_ptr,
M, N, K, bits, maxq,
stride_am, stride_ak,
stride_bk, stride_bn,
stride_cm, stride_cn,
stride_scales, stride_zeros,
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr):
"""
Compute the matrix multiplication C = A x B.
A is of shape (M, K) float16
B is of shape (K//8, N) int32
C is of shape (M, N) float16
scales is of shape (G, N) float16
zeros is of shape (G, N) float16
g_ptr is of shape (K) int32
"""
infearure_per_bits = 32 // bits
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + (pid % group_size_m)
pid_n = (pid % num_pid_in_group) // group_size_m
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
a_mask = (offs_am[:, None] < M)
# b_ptrs is set up such that it repeats elements along the K axis 8 times
b_ptrs = b_ptr + ((offs_k[:, None] // infearure_per_bits) * stride_bk + offs_bn[None, :] * stride_bn) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
g_ptrs = g_ptr + offs_k
# shifter is used to extract the N bits of each element in the 32-bit word from B
scales_ptrs = scales_ptr + offs_bn[None, :]
zeros_ptrs = zeros_ptr + (offs_bn[None, :]// infearure_per_bits)
shifter = (offs_k % infearure_per_bits) * bits
zeros_shifter = (offs_bn % infearure_per_bits) * bits
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, num_pid_k):
g_idx = tl.load(g_ptrs)
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
scales = tl.load(scales_ptrs + g_idx[:, None] * stride_scales) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
zeros = tl.load(zeros_ptrs + g_idx[:, None] * stride_zeros) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
zeros = (zeros >> zeros_shifter[None, :]) & maxq
zeros = (zeros + 1)
a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
# Now we need to unpack b (which is N-bit values) into 32-bit values
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
b = (b - zeros) * scales # Scale and shift
accumulator += tl.dot(a, b)
a_ptrs += BLOCK_SIZE_K
b_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk
g_ptrs += BLOCK_SIZE_K
c = accumulator.to(tl.float16)
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :]
c_mask = (offs_am[:, None] < M) & (offs_bn[None, :] < N)
tl.store(c_ptrs, accumulator, mask=c_mask)
# code based https://github.com/fpgaminer/GPTQ-triton
@triton.autotune(
configs=[
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 256, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8),
triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8),
triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 256, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2),
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2),
],
key=['M', 'N', 'K'],
)
@triton.jit
def trans_matmul_248_kernel(a_ptr, b_ptr, c_ptr,
scales_ptr, zeros_ptr, g_ptr,
M, N, K, bits, maxq,
stride_am, stride_ak,
stride_bk, stride_bn,
stride_cm, stride_cn,
stride_scales, stride_zeros,
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr):
"""
Compute the matrix multiplication C = A x B.
A is of shape (M, N) float16
B is of shape (K//8, N) int32
C is of shape (M, K) float16
scales is of shape (G, N) float16
zeros is of shape (G, N) float16
g_ptr is of shape (K) int32
"""
infearure_per_bits = 32 // bits
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_in_group = GROUP_SIZE_M * num_pid_k
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + (pid % group_size_m)
pid_k = (pid % num_pid_in_group) // group_size_m
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_bk = pid_k * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K)
offs_n = tl.arange(0, BLOCK_SIZE_N)
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_n[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_N)
a_mask = (offs_am[:, None] < M)
# b_ptrs is set up such that it repeats elements along the K axis 8 times
b_ptrs = b_ptr + ((offs_bk[:, None] // infearure_per_bits) * stride_bk + offs_n[None, :] * stride_bn) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
g_ptrs = g_ptr + offs_bk
g_idx = tl.load(g_ptrs)
# shifter is used to extract the N bits of each element in the 32-bit word from B
scales_ptrs = scales_ptr + offs_n[None, :] + g_idx[:, None] * stride_scales
zeros_ptrs = zeros_ptr + (offs_n[None, :]// infearure_per_bits) + g_idx[:, None] * stride_zeros
shifter = (offs_bk % infearure_per_bits) * bits
zeros_shifter = (offs_n % infearure_per_bits) * bits
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_K), dtype=tl.float32)
for k in range(0, num_pid_n):
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
scales = tl.load(scales_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
zeros = tl.load(zeros_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
zeros = (zeros >> zeros_shifter[None, :]) & maxq
zeros = (zeros + 1)
a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_N)
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
# Now we need to unpack b (which is N-bit values) into 32-bit values
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
b = (b - zeros) * scales # Scale and shift
b = tl.trans(b)
accumulator += tl.dot(a, b)
a_ptrs += BLOCK_SIZE_N
b_ptrs += BLOCK_SIZE_N
scales_ptrs += BLOCK_SIZE_N
zeros_ptrs += (BLOCK_SIZE_N // infearure_per_bits)
c = accumulator.to(tl.float16)
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bk[None, :]
c_mask = (offs_am[:, None] < M) & (offs_bk[None, :] < K)
tl.store(c_ptrs, accumulator, mask=c_mask)
def triton_matmul(input, qweight, scales, qzeros, g_idx, bits, maxq):
output = torch.empty((input.shape[0], qweight.shape[1]), device='cuda', dtype=torch.float16)
grid = lambda META: (triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(qweight.shape[1], META['BLOCK_SIZE_N']),)
matmul_248_kernel[grid](input, qweight, output,
scales, qzeros, g_idx,
input.shape[0], qweight.shape[1], input.shape[1], bits, maxq,
input.stride(0), input.stride(1),
qweight.stride(0), qweight.stride(1),
output.stride(0), output.stride(1),
scales.stride(0), qzeros.stride(0))
return output
import triton
import triton.language as tl
import torch
# code based https://github.com/fpgaminer/GPTQ-triton
@triton.autotune(
configs=[
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8),
triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8),
triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2),
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2),
],
key=['M', 'N', 'K'],
)
@triton.jit
def matmul_248_kernel(a_ptr, b_ptr, c_ptr,
scales_ptr, zeros_ptr, g_ptr,
M, N, K, bits, maxq,
stride_am, stride_ak,
stride_bk, stride_bn,
stride_cm, stride_cn,
stride_scales, stride_zeros,
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr):
"""
Compute the matrix multiplication C = A x B.
A is of shape (M, K) float16
B is of shape (K//8, N) int32
C is of shape (M, N) float16
scales is of shape (G, N) float16
zeros is of shape (G, N) float16
g_ptr is of shape (K) int32
"""
infearure_per_bits = 32 // bits
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + (pid % group_size_m)
pid_n = (pid % num_pid_in_group) // group_size_m
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
a_mask = (offs_am[:, None] < M)
# b_ptrs is set up such that it repeats elements along the K axis 8 times
b_ptrs = b_ptr + ((offs_k[:, None] // infearure_per_bits) * stride_bk + offs_bn[None, :] * stride_bn) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
g_ptrs = g_ptr + offs_k
# shifter is used to extract the N bits of each element in the 32-bit word from B
scales_ptrs = scales_ptr + offs_bn[None, :]
zeros_ptrs = zeros_ptr + (offs_bn[None, :] // infearure_per_bits)
shifter = (offs_k % infearure_per_bits) * bits
zeros_shifter = (offs_bn % infearure_per_bits) * bits
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, num_pid_k):
g_idx = tl.load(g_ptrs)
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
scales = tl.load(scales_ptrs + g_idx[:, None] * stride_scales) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
zeros = tl.load(zeros_ptrs + g_idx[:, None] * stride_zeros) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
zeros = (zeros >> zeros_shifter[None, :]) & maxq
zeros = (zeros + 1)
a = tl.load(a_ptrs, mask=a_mask, other=0.0) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
# Now we need to unpack b (which is N-bit values) into 32-bit values
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
b = (b - zeros) * scales # Scale and shift
# ! Convert to fp16
b = b.to(tl.float16)
a = a.to(tl.float16)
accumulator += tl.dot(a, b)
a_ptrs += BLOCK_SIZE_K
b_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk
g_ptrs += BLOCK_SIZE_K
c = accumulator.to(tl.float16)
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :]
c_mask = (offs_am[:, None] < M) & (offs_bn[None, :] < N)
tl.store(c_ptrs, c, mask=c_mask)
# code based https://github.com/fpgaminer/GPTQ-triton
@triton.autotune(
configs=[
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 256, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8),
triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8),
triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 256, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2),
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2),
],
key=['M', 'N', 'K'],
)
@triton.jit
def trans_matmul_248_kernel(a_ptr, b_ptr, c_ptr,
scales_ptr, zeros_ptr, g_ptr,
M, N, K, bits, maxq,
stride_am, stride_ak,
stride_bk, stride_bn,
stride_cm, stride_cn,
stride_scales, stride_zeros,
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr):
"""
Compute the matrix multiplication C = A x B.
A is of shape (M, N) float16
B is of shape (K//8, N) int32
C is of shape (M, K) float16
scales is of shape (G, N) float16
zeros is of shape (G, N) float16
g_ptr is of shape (K) int32
"""
infearure_per_bits = 32 // bits
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_in_group = GROUP_SIZE_M * num_pid_k
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + (pid % group_size_m)
pid_k = (pid % num_pid_in_group) // group_size_m
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_bk = pid_k * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K)
offs_n = tl.arange(0, BLOCK_SIZE_N)
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_n[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_N)
a_mask = (offs_am[:, None] < M)
# b_ptrs is set up such that it repeats elements along the K axis 8 times
b_ptrs = b_ptr + ((offs_bk[:, None] // infearure_per_bits) * stride_bk + offs_n[None, :] * stride_bn) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
g_ptrs = g_ptr + offs_bk
g_idx = tl.load(g_ptrs)
# shifter is used to extract the N bits of each element in the 32-bit word from B
scales_ptrs = scales_ptr + offs_n[None, :] + g_idx[:, None] * stride_scales
zeros_ptrs = zeros_ptr + (offs_n[None, :] // infearure_per_bits) + g_idx[:, None] * stride_zeros
shifter = (offs_bk % infearure_per_bits) * bits
zeros_shifter = (offs_n % infearure_per_bits) * bits
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_K), dtype=tl.float32)
for k in range(0, num_pid_n):
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
scales = tl.load(scales_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
zeros = tl.load(zeros_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
zeros = (zeros >> zeros_shifter[None, :]) & maxq
zeros = (zeros + 1)
a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_N)
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
# Now we need to unpack b (which is N-bit values) into 32-bit values
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
b = (b - zeros) * scales # Scale and shift
b = tl.trans(b)
# ! Convert to fp16
b = b.to(tl.float16)
a = a.to(tl.float16)
accumulator += tl.dot(a, b)
a_ptrs += BLOCK_SIZE_N
b_ptrs += BLOCK_SIZE_N
scales_ptrs += BLOCK_SIZE_N
zeros_ptrs += (BLOCK_SIZE_N // infearure_per_bits)
c = accumulator.to(tl.float16)
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bk[None, :]
c_mask = (offs_am[:, None] < M) & (offs_bk[None, :] < K)
tl.store(c_ptrs, c, mask=c_mask)
def triton_matmul(input, qweight, scales, qzeros, g_idx, bits, maxq):
output = torch.empty((input.shape[0], qweight.shape[1]), device='cuda', dtype=torch.float16)
grid = lambda META: (triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(qweight.shape[1], META['BLOCK_SIZE_N']),)
matmul_248_kernel[grid](input, qweight, output,
scales, qzeros, g_idx,
input.shape[0], qweight.shape[1], input.shape[1], bits, maxq,
input.stride(0), input.stride(1),
qweight.stride(0), qweight.stride(1),
output.stride(0), output.stride(1),
scales.stride(0), qzeros.stride(0))
return output