Merge pull request #59 from yamashi/main

Add flash attention
This commit is contained in:
John Smith 2023-04-07 10:05:18 +08:00 committed by GitHub
commit 85e9cf004a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 159 additions and 3 deletions

View File

@ -15,7 +15,7 @@ class Finetune4bConfig:
warmup_steps: int, save_steps: int, save_total_limit: int, logging_steps: int,
checkpoint: bool, skip: bool, verbose: bool,
txt_row_thd: int, use_eos_token: bool, groupsize: int,
local_rank: int,
local_rank: int, flash_attention: bool
):
"""
Args:
@ -48,6 +48,7 @@ class Finetune4bConfig:
use_eos_token (bool): Use Eos token instead of padding with 0
groupsize (int): Group size of V2 model, use -1 to load V1 model
local_rank (int): local rank if using torch.distributed.launch
flash_attention (bool): Enables flash attention
"""
self.dataset = dataset
self.ds_type = ds_type
@ -84,6 +85,7 @@ class Finetune4bConfig:
if self.ddp:
self.gradient_accumulation_steps = self.gradient_accumulation_steps // self.world_size
self.groupsize = groupsize
self.flash_attention = flash_attention
def __str__(self) -> str:

View File

@ -66,6 +66,8 @@ def parse_commandline():
# Multi GPU Support
parser_training.add_argument("--local_rank", type=int, default=0, help="local rank if using torch.distributed.launch")
parser_training.add_argument("--flash_attention", help="enables flash attention, can improve performance and reduce VRAM use")
return vars(parser.parse_args())
@ -102,4 +104,5 @@ def get_config() -> Finetune4bConfig:
use_eos_token=args["use_eos_token"]!=0,
groupsize=args["groupsize"],
local_rank=args["local_rank"],
flash_attention=args["flash_attention"],
)

View File

@ -16,6 +16,13 @@
}
]
"""
# Early load config to replace attn if needed
from arg_parser import get_config
ft_config = get_config()
if ft_config.flash_attention:
from monkeypatch.llama_flash_attn_monkey_patch import replace_llama_attn_with_flash_attn
replace_llama_attn_with_flash_attn()
import sys
@ -29,10 +36,9 @@ from autograd_4bit import load_llama_model_4bit_low_ram
from peft import LoraConfig, get_peft_model, get_peft_model_state_dict, PeftModel
# ! Config
from arg_parser import get_config
import train_data
ft_config = get_config()
# * Show loaded parameters
if ft_config.local_rank == 0:

View File

@ -0,0 +1,144 @@
from typing import List, Optional, Tuple
import torch
from torch import nn
import transformers
from transformers.models.llama.modeling_llama import LlamaConfig, LlamaRotaryEmbedding, apply_rotary_pos_emb
from einops import rearrange
from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func
from flash_attn.bert_padding import unpad_input, pad_input
class LlamaAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
config: LlamaConfig,
):
super().__init__()
hidden_size = config.hidden_size
num_heads = config.num_attention_heads
self.hidden_size = hidden_size
self.num_heads = num_heads
self.head_dim = self.hidden_size // num_heads
if (self.head_dim * num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {num_heads}).")
self.q_proj = nn.Linear(
hidden_size,
num_heads * self.head_dim,
bias=False,
)
self.k_proj = nn.Linear(
hidden_size,
num_heads * self.head_dim,
bias=False,
)
self.v_proj = nn.Linear(
hidden_size,
num_heads * self.head_dim,
bias=False,
)
self.o_proj = nn.Linear(
num_heads * self.head_dim,
hidden_size,
bias=False,
)
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads,
self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel
attention_mask: [bsz, q_len]
"""
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states).view(
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# [bsz, q_len, nh, hd]
# [bsz, nh, q_len, hd]
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states,
key_states,
cos,
sin,
position_ids)
# [bsz, nh, t, hd]
assert not output_attentions, "output_attentions is not supported"
assert not use_cache, "use_cache is not supported"
assert past_key_value is None, "past_key_value is not supported"
# Flash attention codes from
# https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/flash_attention.py
# transform the data into the format required by flash attention
qkv = torch.stack([query_states, key_states, value_states], dim=2) # [bsz, nh, 3, q_len, hd]
qkv = qkv.transpose(1, 3) # [bsz, q_len, 3, nh, hd]
# We have disabled _prepare_decoder_attention_mask in LlamaModel
# the attention_mask should be the same as the key_padding_mask
key_padding_mask = attention_mask
if key_padding_mask is None:
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
max_s = q_len
cu_q_lens = torch.arange(0, (bsz + 1) * q_len, step=q_len, dtype=torch.int32,
device=qkv.device)
output = flash_attn_unpadded_qkvpacked_func(
qkv, cu_q_lens, max_s, 0.0,
softmax_scale=None, causal=True
)
output = rearrange(output, '(b s) ... -> b s ...', b=bsz)
else:
nheads = qkv.shape[-2]
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
x_unpad, indices, cu_q_lens, max_s = unpad_input(x, key_padding_mask)
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
output_unpad = flash_attn_unpadded_qkvpacked_func(
x_unpad, cu_q_lens, max_s, 0.0,
softmax_scale=None, causal=True
)
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
indices, bsz, q_len),
'b s (h d) -> b s h d', h=nheads)
return self.o_proj(rearrange(output,
'b s h d -> b s (h d)')), None, None
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
def _prepare_decoder_attention_mask(self, attention_mask, input_shape,
inputs_embeds, past_key_values_length):
# [bsz, seq_len]
return attention_mask
def replace_llama_attn_with_flash_attn():
transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = _prepare_decoder_attention_mask
transformers.models.llama.modeling_llama.LlamaAttention = LlamaAttention

View File

@ -4,6 +4,7 @@ bitsandbytes
datasets
sentencepiece
safetensors
flash-attn
git+https://github.com/huggingface/transformers.git
git+https://github.com/sterlind/GPTQ-for-LLaMa.git@lora_4bit
git+https://github.com/sterlind/peft.git