diff --git a/Finetune4bConfig.py b/Finetune4bConfig.py index 09c535c..06eb26e 100644 --- a/Finetune4bConfig.py +++ b/Finetune4bConfig.py @@ -97,5 +97,6 @@ class Finetune4bConfig: f"{self.warmup_steps=}\n{self.save_steps=}\n{self.save_total_limit=}\n" +\ f"{self.logging_steps=}\n" +\ f"{self.checkpoint=}\n{self.skip=}\n" +\ - f"{self.world_size=}\n{self.ddp=}\n{self.device_map=}" + f"{self.world_size=}\n{self.ddp=}\n{self.device_map=}\n" +\ + f"{self.groupsize=}\n" return s.replace("self.", "") diff --git a/README.md b/README.md index 27dcdf6..4256ac0 100644 --- a/README.md +++ b/README.md @@ -35,10 +35,20 @@ pip install -r requirements.txt ~The same finetune script from https://github.com/tloen/alpaca-lora can be used.~
After installation, this script can be used: +GPTQv1: ``` python finetune.py ``` +or +``` +GPTQ_VERSION=1 python finetune.py +``` + +GPTQv2: +``` +GPTQ_VERSION=2 python finetune.py +``` # Inference diff --git a/autograd_4bit/__init__.py b/autograd_4bit/__init__.py new file mode 100644 index 0000000..bee84b3 --- /dev/null +++ b/autograd_4bit/__init__.py @@ -0,0 +1,21 @@ +import os +from colorama import init, Fore, Back, Style +init(autoreset=True) + +try: + GPTQ_VERSION = int(os.environ["GPTQ_VERSION"]) +except: + print(Style.BRIGHT + Fore.YELLOW + "GPTQ_VERSION environment not provided. Fallback to GPTQv1") + GPTQ_VERSION = 1 # Fallback version + +loader = None + + +if GPTQ_VERSION == 1: + from .autograd_4bit_v1 import Autograd4bitQuantLinear, load_llama_model_4bit_low_ram + print(Style.BRIGHT + Fore.GREEN + "GPTQv1 set") +elif GPTQ_VERSION == 2: + from .autograd_4bit_v2 import Autograd4bitQuantLinear, load_llama_model_4bit_low_ram + print(Style.BRIGHT + Fore.GREEN + "GPTQv2 set") +else: + raise ValueError("GPTQ_VERSION not set or invalid") \ No newline at end of file diff --git a/autograd_4bit.py b/autograd_4bit/autograd_4bit_v1.py similarity index 83% rename from autograd_4bit.py rename to autograd_4bit/autograd_4bit_v1.py index b7e883f..6432f2d 100644 --- a/autograd_4bit.py +++ b/autograd_4bit/autograd_4bit_v1.py @@ -2,7 +2,6 @@ import matmul_utils_4bit as mm4b import torch import torch.nn as nn import time -import math class AutogradMatmul4bit(torch.autograd.Function): @@ -32,25 +31,17 @@ class AutogradMatmul4bit(torch.autograd.Function): # Assumes layer is perfectly divisible into 256 * 256 blocks class Autograd4bitQuantLinear(nn.Module): - def __init__(self, infeatures, outfeatures, groupsize=-1): + def __init__(self, in_features, out_features, groupsize=None): super().__init__() bits = 4 - self.in_features = infeatures - self.out_features = outfeatures + self.in_features = in_features + self.out_features = out_features self.bits = bits - self.groupsize = groupsize - if groupsize == -1: - self.register_buffer('zeros', torch.empty((outfeatures, 1))) - self.register_buffer('scales', torch.empty((outfeatures, 1))) - else: - self.register_buffer('qzeros', - torch.empty((math.ceil(infeatures/groupsize), outfeatures // 256 * (bits * 8)), dtype=torch.int) - ) - self.register_buffer('scales', torch.empty((math.ceil(infeatures/groupsize), outfeatures))) - self.register_buffer('g_idx', torch.tensor([i // self.groupsize for i in range(infeatures)], dtype = torch.int32)) - self.register_buffer('bias', torch.empty(outfeatures)) + self.register_buffer('zeros', torch.empty((out_features, 1))) + self.register_buffer('scales', torch.empty((out_features, 1))) + self.bias = nn.Parameter(torch.empty(out_features)) self.register_buffer( - 'qweight', torch.empty((infeatures // 256 * (bits * 8), outfeatures), dtype=torch.int) + 'qweight', torch.empty((in_features // 256 * (bits * 8), out_features), dtype=torch.int) ) @@ -84,8 +75,7 @@ def model_to_half(model): model.half() for n, m in model.named_modules(): if isinstance(m, Autograd4bitQuantLinear): - if m.groupsize == -1: - m.zeros = m.zeros.half() + m.zeros = m.zeros.half() m.scales = m.scales.half() m.bias = m.bias.half() print('Converted as Half.') @@ -95,8 +85,7 @@ def model_to_float(model): model.float() for n, m in model.named_modules(): if isinstance(m, Autograd4bitQuantLinear): - if m.groupsize == -1: - m.zeros = m.zeros.float() + m.zeros = m.zeros.float() m.scales = m.scales.float() m.bias = m.bias.float() print('Converted as Float.') @@ -187,8 +176,7 @@ def load_llama_model_4bit_low_ram_and_offload_to_cpu(config_path, model_path, lo print('Apply half ...') for n, m in model.named_modules(): if isinstance(m, Autograd4bitQuantLinear) or ((lora_path is not None) and isinstance(m, Linear4bitLt)): - if m.groupsize == -1: - m.zeros = m.zeros.half() + m.zeros = m.zeros.half() m.scales = m.scales.half() m.bias = m.bias.half() diff --git a/autograd_4bit/autograd_4bit_v2.py b/autograd_4bit/autograd_4bit_v2.py new file mode 100644 index 0000000..20c253d --- /dev/null +++ b/autograd_4bit/autograd_4bit_v2.py @@ -0,0 +1,221 @@ +from colorama import init, Fore, Back, Style +import torch +import torch.nn as nn +import time +import math +import triton +from triton_utils import matmul_248_kernel, trans_matmul_248_kernel + + +class AutogradMatmul4bit(torch.autograd.Function): + @staticmethod + def forward(ctx, input, qweight, scales, qzeros, g_idx, bits, maxq): + output = torch.empty((input.shape[0], qweight.shape[1]), device='cuda', dtype=torch.float16) + grid = lambda META: (triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(qweight.shape[1], META['BLOCK_SIZE_N']),) + matmul_248_kernel[grid](input, qweight, output, + scales, qzeros, g_idx, + input.shape[0], qweight.shape[1], input.shape[1], bits, maxq, + input.stride(0), input.stride(1), + qweight.stride(0), qweight.stride(1), + output.stride(0), output.stride(1), + scales.stride(0), qzeros.stride(0)) + + ctx.save_for_backward(qweight, scales, qzeros, g_idx) + ctx.input_shape, ctx.bits,ctx.maxq = input.shape,bits, maxq + return output + + @staticmethod + def backward(ctx, grad_output): + input_shape, bits, maxq = ctx.input_shape, ctx.bits, ctx.maxq + qweight, scales, qzeros, g_idx = ctx.saved_tensors + grade_input = None + + if ctx.needs_input_grad[0]: + grade_input = torch.empty((input_shape[0], input_shape[1]), device='cuda', dtype=torch.float32) + grid = lambda META: (triton.cdiv(input_shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(input_shape[1], META['BLOCK_SIZE_K']),) + trans_matmul_248_kernel[grid](grad_output, qweight, grade_input, + scales, qzeros, g_idx, + input_shape[0], qweight.shape[1], input_shape[1], bits, maxq, + grad_output.stride(0), grad_output.stride(1), + qweight.stride(0), qweight.stride(1), + grade_input.stride(0), grade_input.stride(1), + scales.stride(0), qzeros.stride(0)) + return grade_input, None, None, None, None, None, None + + +class Autograd4bitQuantLinear(nn.Module): + + def __init__(self, in_features, out_features, groupsize, bias=True): + super().__init__() + self.in_features = in_features + self.out_features = out_features + self.bits = 4 # Hardcoded 4-bits quantizations + self.maxq = 2 ** self.bits - 1 + self.groupsize = groupsize if groupsize != -1 else in_features + + self.register_buffer('qweight', torch.zeros((in_features // 32 * self.bits, out_features), dtype=torch.int32)) + self.register_buffer('qzeros', torch.zeros((math.ceil(in_features / self.groupsize), out_features // 32 * self.bits), dtype=torch.int32)) + self.register_buffer('scales', torch.zeros((math.ceil(in_features / self.groupsize), out_features), dtype=torch.float16)) + self.register_buffer('g_idx', torch.tensor([i // self.groupsize for i in range(in_features)], dtype = torch.int32)) + if bias: + self.register_buffer('bias', torch.zeros(out_features,dtype=torch.float16)) + else: + self.bias = None + + def forward(self, x): + out_shape = x.shape[:-1] + (self.out_features, ) + out = AutogradMatmul4bit.apply(x.reshape(-1,x.shape[-1]), self.qweight, self.scales, + self.qzeros, self.g_idx, self.bits, self.maxq) + out = out + self.bias if self.bias is not None else out + return out.reshape(out_shape) + + +def make_quant_for_4bit_autograd(module, names, name='', groupsize=-1): + if isinstance(module, Autograd4bitQuantLinear): + return + for attr in dir(module): + tmp = getattr(module, attr) + name1 = name + '.' + attr if name != '' else attr + if name1 in names: + setattr( + module, attr, Autograd4bitQuantLinear(tmp.in_features, tmp.out_features, groupsize=groupsize) + ) + for name1, child in module.named_children(): + make_quant_for_4bit_autograd(child, names, name + '.' + name1 if name != '' else name1, groupsize=groupsize) + + +def model_to_half(model): + model.half() + for n, m in model.named_modules(): + if isinstance(m, Autograd4bitQuantLinear): + m.qzeros = m.qzeros.half() + m.scales = m.scales.half() + m.bias = m.bias.half() + print(Style.BRIGHT + Fore.YELLOW + 'Converted as Half.') + + +def model_to_float(model): + model.float() + for n, m in model.named_modules(): + if isinstance(m, Autograd4bitQuantLinear): + m.qzeros = m.qzeros.float() + m.scales = m.scales.float() + m.bias = m.bias.float() + print(Style.BRIGHT + Fore.YELLOW + 'Converted as Float.') + + +def find_layers(module, layers=[nn.Conv2d, nn.Linear], name=''): + if type(module) in layers: + return {name: module} + res = {} + for name1, child in module.named_children(): + res.update(find_layers( + child, layers=layers, name=name + '.' + name1 if name != '' else name1 + )) + return res + + +def load_llama_model_4bit_low_ram(config_path, model_path, groupsize=-1, half=False, device_map="auto", seqlen=2048): + import accelerate + from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer + + print(Style.BRIGHT + Fore.CYAN + "Loading Model ...") + t0 = time.time() + + with accelerate.init_empty_weights(): + config = LlamaConfig.from_pretrained(config_path) + model = LlamaForCausalLM(config) + model = model.eval() + layers = find_layers(model) + for name in ['lm_head']: + if name in layers: + del layers[name] + make_quant_for_4bit_autograd(model, layers, groupsize=groupsize) + model = accelerate.load_checkpoint_and_dispatch( + model=model, + checkpoint=model_path, + device_map=device_map, + no_split_module_classes=["LlamaDecoderLayer"] + ) + + model.seqlen = seqlen + + if half: + model_to_half(model) + + tokenizer = LlamaTokenizer.from_pretrained(config_path) + tokenizer.truncation_side = 'left' + + print(Style.BRIGHT + Fore.GREEN + f"Loaded the model in {(time.time()-t0):.2f} seconds.") + + return model, tokenizer + +def load_llama_model_4bit_low_ram_and_offload_to_cpu(config_path, model_path, lora_path=None, groupsize=-1, seqlen=2048, max_memory=None): + import accelerate + from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer + + if max_memory is None: + max_memory = {0: '24Gib', 'cpu': '48Gib'} + + print(Style.BRIGHT + Fore.CYAN + "Loading Model ...") + t0 = time.time() + + with accelerate.init_empty_weights(): + config = LlamaConfig.from_pretrained(config_path) + model = LlamaForCausalLM(config) + model = model.eval() + layers = find_layers(model) + for name in ['lm_head']: + if name in layers: + del layers[name] + make_quant_for_4bit_autograd(model, layers, groupsize=groupsize) + accelerate.load_checkpoint_in_model(model, checkpoint=model_path, device_map={'': 'cpu'}) + + # rotary_emb fix + for n, m in model.named_modules(): + if 'rotary_emb' in n: + cos_cached = m.cos_cached.clone().cpu() + sin_cached = m.sin_cached.clone().cpu() + break + + if lora_path is not None: + from peft import PeftModel + from peft.tuners.lora import Linear4bitLt + model = PeftModel.from_pretrained(model, lora_path, device_map={'': 'cpu'}, torch_dtype=torch.float32) + print(Style.BRIGHT + Fore.GREEN + '{} Lora Applied.'.format(lora_path)) + + model.seqlen = seqlen + + print('Apply half ...') + for n, m in model.named_modules(): + if isinstance(m, Autograd4bitQuantLinear) or ((lora_path is not None) and isinstance(m, Linear4bitLt)): + m.qzeros = m.qzeros.half() + m.scales = m.scales.half() + m.bias = m.bias.half() + + print('Dispatching model ...') + device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LlamaDecoderLayer"]) + model = accelerate.dispatch_model(model, device_map=device_map, offload_buffers=True, main_device=0) + torch.cuda.empty_cache() + print(Style.BRIGHT + Fore.YELLOW + 'Total {:.2f} Gib VRAM used.'.format(torch.cuda.memory_allocated() / 1024 / 1024)) + + # rotary_emb fix + for n, m in model.named_modules(): + if 'rotary_emb' in n: + if getattr(m, '_hf_hook', None): + if isinstance(m._hf_hook, accelerate.hooks.SequentialHook): + hooks = m._hf_hook.hooks + else: + hooks = [m._hf_hook] + for hook in hooks: + if hook.offload: + if n + '.sin_cached' not in hook.weights_map.dataset.state_dict.keys(): + hook.weights_map.dataset.state_dict[n + '.sin_cached'] = sin_cached.clone().cpu() + hook.weights_map.dataset.state_dict[n + '.cos_cached'] = cos_cached.clone().cpu() + + tokenizer = LlamaTokenizer.from_pretrained(config_path) + tokenizer.truncation_side = 'left' + + print(Style.BRIGHT + Fore.GREEN + f"Loaded the model in {(time.time()-t0):.2f} seconds.") + + return model, tokenizer diff --git a/finetune.py b/finetune.py index eea0e66..82dbde5 100644 --- a/finetune.py +++ b/finetune.py @@ -115,6 +115,7 @@ if not ft_config.skip: per_device_train_batch_size=ft_config.mbatch_size, gradient_accumulation_steps=ft_config.gradient_accumulation_steps, warmup_steps=ft_config.warmup_steps, + optim="adamw_torch", num_train_epochs=ft_config.epochs, learning_rate=ft_config.lr, fp16=True, diff --git a/requirements.txt b/requirements.txt index 2db1f01..95a23a6 100644 --- a/requirements.txt +++ b/requirements.txt @@ -5,6 +5,7 @@ datasets sentencepiece safetensors flash-attn +triton git+https://github.com/huggingface/transformers.git git+https://github.com/sterlind/GPTQ-for-LLaMa.git@lora_4bit git+https://github.com/sterlind/peft.git diff --git a/triton_utils.py b/triton_utils.py index 940c73c..57f9e66 100644 --- a/triton_utils.py +++ b/triton_utils.py @@ -1,205 +1,210 @@ -import triton -import triton.language as tl -import torch - -# code based https://github.com/fpgaminer/GPTQ-triton -@triton.autotune( - configs=[ - triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8), - triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8), - triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8), - triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), - triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), - triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), - triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), - triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), - triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), - triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2), - triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2), - ], - key=['M', 'N', 'K'], -) - -@triton.jit -def matmul_248_kernel(a_ptr, b_ptr, c_ptr, - scales_ptr, zeros_ptr, g_ptr, - M, N, K, bits, maxq, - stride_am, stride_ak, - stride_bk, stride_bn, - stride_cm, stride_cn, - stride_scales, stride_zeros, - BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, - GROUP_SIZE_M: tl.constexpr): - """ - Compute the matrix multiplication C = A x B. - A is of shape (M, K) float16 - B is of shape (K//8, N) int32 - C is of shape (M, N) float16 - scales is of shape (G, N) float16 - zeros is of shape (G, N) float16 - g_ptr is of shape (K) int32 - """ - infearure_per_bits = 32 // bits - - pid = tl.program_id(axis=0) - num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) - num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) - num_pid_k = tl.cdiv(K, BLOCK_SIZE_K) - num_pid_in_group = GROUP_SIZE_M * num_pid_n - group_id = pid // num_pid_in_group - first_pid_m = group_id * GROUP_SIZE_M - group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) - pid_m = first_pid_m + (pid % group_size_m) - pid_n = (pid % num_pid_in_group) // group_size_m - - offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) - offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) - offs_k = tl.arange(0, BLOCK_SIZE_K) - a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_K) - a_mask = (offs_am[:, None] < M) - # b_ptrs is set up such that it repeats elements along the K axis 8 times - b_ptrs = b_ptr + ((offs_k[:, None] // infearure_per_bits) * stride_bk + offs_bn[None, :] * stride_bn) # (BLOCK_SIZE_K, BLOCK_SIZE_N) - g_ptrs = g_ptr + offs_k - # shifter is used to extract the N bits of each element in the 32-bit word from B - scales_ptrs = scales_ptr + offs_bn[None, :] - zeros_ptrs = zeros_ptr + (offs_bn[None, :]// infearure_per_bits) - - shifter = (offs_k % infearure_per_bits) * bits - zeros_shifter = (offs_bn % infearure_per_bits) * bits - accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) - - for k in range(0, num_pid_k): - g_idx = tl.load(g_ptrs) - - # Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop - scales = tl.load(scales_ptrs + g_idx[:, None] * stride_scales) # (BLOCK_SIZE_K, BLOCK_SIZE_N,) - zeros = tl.load(zeros_ptrs + g_idx[:, None] * stride_zeros) # (BLOCK_SIZE_K, BLOCK_SIZE_N,) - - zeros = (zeros >> zeros_shifter[None, :]) & maxq - zeros = (zeros + 1) - - a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_K) - b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated - - # Now we need to unpack b (which is N-bit values) into 32-bit values - b = (b >> shifter[:, None]) & maxq # Extract the N-bit values - b = (b - zeros) * scales # Scale and shift - - accumulator += tl.dot(a, b) - a_ptrs += BLOCK_SIZE_K - b_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk - g_ptrs += BLOCK_SIZE_K - - c = accumulator.to(tl.float16) - c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :] - c_mask = (offs_am[:, None] < M) & (offs_bn[None, :] < N) - tl.store(c_ptrs, accumulator, mask=c_mask) - -# code based https://github.com/fpgaminer/GPTQ-triton -@triton.autotune( - configs=[ - triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8), - triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 256, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8), - triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8), - triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), - triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 256, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), - triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), - triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), - triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), - triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), - triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2), - triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2), - ], - key=['M', 'N', 'K'], -) - -@triton.jit -def trans_matmul_248_kernel(a_ptr, b_ptr, c_ptr, - scales_ptr, zeros_ptr, g_ptr, - M, N, K, bits, maxq, - stride_am, stride_ak, - stride_bk, stride_bn, - stride_cm, stride_cn, - stride_scales, stride_zeros, - BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, - GROUP_SIZE_M: tl.constexpr): - """ - Compute the matrix multiplication C = A x B. - A is of shape (M, N) float16 - B is of shape (K//8, N) int32 - C is of shape (M, K) float16 - scales is of shape (G, N) float16 - zeros is of shape (G, N) float16 - g_ptr is of shape (K) int32 - """ - infearure_per_bits = 32 // bits - - pid = tl.program_id(axis=0) - num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) - num_pid_k = tl.cdiv(K, BLOCK_SIZE_K) - num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) - num_pid_in_group = GROUP_SIZE_M * num_pid_k - group_id = pid // num_pid_in_group - first_pid_m = group_id * GROUP_SIZE_M - group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) - pid_m = first_pid_m + (pid % group_size_m) - pid_k = (pid % num_pid_in_group) // group_size_m - - offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) - offs_bk = pid_k * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K) - offs_n = tl.arange(0, BLOCK_SIZE_N) - a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_n[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_N) - a_mask = (offs_am[:, None] < M) - # b_ptrs is set up such that it repeats elements along the K axis 8 times - b_ptrs = b_ptr + ((offs_bk[:, None] // infearure_per_bits) * stride_bk + offs_n[None, :] * stride_bn) # (BLOCK_SIZE_K, BLOCK_SIZE_N) - g_ptrs = g_ptr + offs_bk - g_idx = tl.load(g_ptrs) - - # shifter is used to extract the N bits of each element in the 32-bit word from B - scales_ptrs = scales_ptr + offs_n[None, :] + g_idx[:, None] * stride_scales - zeros_ptrs = zeros_ptr + (offs_n[None, :]// infearure_per_bits) + g_idx[:, None] * stride_zeros - - shifter = (offs_bk % infearure_per_bits) * bits - zeros_shifter = (offs_n % infearure_per_bits) * bits - accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_K), dtype=tl.float32) - - for k in range(0, num_pid_n): - # Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop - scales = tl.load(scales_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,) - zeros = tl.load(zeros_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,) - - zeros = (zeros >> zeros_shifter[None, :]) & maxq - zeros = (zeros + 1) - - a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_N) - b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated - - # Now we need to unpack b (which is N-bit values) into 32-bit values - b = (b >> shifter[:, None]) & maxq # Extract the N-bit values - b = (b - zeros) * scales # Scale and shift - b = tl.trans(b) - - accumulator += tl.dot(a, b) - a_ptrs += BLOCK_SIZE_N - b_ptrs += BLOCK_SIZE_N - scales_ptrs += BLOCK_SIZE_N - zeros_ptrs += (BLOCK_SIZE_N // infearure_per_bits) - - c = accumulator.to(tl.float16) - c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bk[None, :] - c_mask = (offs_am[:, None] < M) & (offs_bk[None, :] < K) - tl.store(c_ptrs, accumulator, mask=c_mask) - - -def triton_matmul(input, qweight, scales, qzeros, g_idx, bits, maxq): - output = torch.empty((input.shape[0], qweight.shape[1]), device='cuda', dtype=torch.float16) - grid = lambda META: (triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(qweight.shape[1], META['BLOCK_SIZE_N']),) - matmul_248_kernel[grid](input, qweight, output, - scales, qzeros, g_idx, - input.shape[0], qweight.shape[1], input.shape[1], bits, maxq, - input.stride(0), input.stride(1), - qweight.stride(0), qweight.stride(1), - output.stride(0), output.stride(1), - scales.stride(0), qzeros.stride(0)) - return output - \ No newline at end of file +import triton +import triton.language as tl +import torch + +# code based https://github.com/fpgaminer/GPTQ-triton +@triton.autotune( + configs=[ + triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8), + triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8), + triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8), + triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), + triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), + triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), + triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), + triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), + triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), + triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2), + triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2), + ], + key=['M', 'N', 'K'], +) + +@triton.jit +def matmul_248_kernel(a_ptr, b_ptr, c_ptr, + scales_ptr, zeros_ptr, g_ptr, + M, N, K, bits, maxq, + stride_am, stride_ak, + stride_bk, stride_bn, + stride_cm, stride_cn, + stride_scales, stride_zeros, + BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, + GROUP_SIZE_M: tl.constexpr): + """ + Compute the matrix multiplication C = A x B. + A is of shape (M, K) float16 + B is of shape (K//8, N) int32 + C is of shape (M, N) float16 + scales is of shape (G, N) float16 + zeros is of shape (G, N) float16 + g_ptr is of shape (K) int32 + """ + infearure_per_bits = 32 // bits + + pid = tl.program_id(axis=0) + num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) + num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) + num_pid_k = tl.cdiv(K, BLOCK_SIZE_K) + num_pid_in_group = GROUP_SIZE_M * num_pid_n + group_id = pid // num_pid_in_group + first_pid_m = group_id * GROUP_SIZE_M + group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) + pid_m = first_pid_m + (pid % group_size_m) + pid_n = (pid % num_pid_in_group) // group_size_m + + offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) + offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) + offs_k = tl.arange(0, BLOCK_SIZE_K) + a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_K) + a_mask = (offs_am[:, None] < M) + # b_ptrs is set up such that it repeats elements along the K axis 8 times + b_ptrs = b_ptr + ((offs_k[:, None] // infearure_per_bits) * stride_bk + offs_bn[None, :] * stride_bn) # (BLOCK_SIZE_K, BLOCK_SIZE_N) + g_ptrs = g_ptr + offs_k + # shifter is used to extract the N bits of each element in the 32-bit word from B + scales_ptrs = scales_ptr + offs_bn[None, :] + zeros_ptrs = zeros_ptr + (offs_bn[None, :] // infearure_per_bits) + + shifter = (offs_k % infearure_per_bits) * bits + zeros_shifter = (offs_bn % infearure_per_bits) * bits + accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) + + for k in range(0, num_pid_k): + g_idx = tl.load(g_ptrs) + + # Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop + scales = tl.load(scales_ptrs + g_idx[:, None] * stride_scales) # (BLOCK_SIZE_K, BLOCK_SIZE_N,) + zeros = tl.load(zeros_ptrs + g_idx[:, None] * stride_zeros) # (BLOCK_SIZE_K, BLOCK_SIZE_N,) + + zeros = (zeros >> zeros_shifter[None, :]) & maxq + zeros = (zeros + 1) + + a = tl.load(a_ptrs, mask=a_mask, other=0.0) # (BLOCK_SIZE_M, BLOCK_SIZE_K) + b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated + + # Now we need to unpack b (which is N-bit values) into 32-bit values + b = (b >> shifter[:, None]) & maxq # Extract the N-bit values + b = (b - zeros) * scales # Scale and shift + # ! Convert to fp16 + b = b.to(tl.float16) + a = a.to(tl.float16) + + accumulator += tl.dot(a, b) + a_ptrs += BLOCK_SIZE_K + b_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk + g_ptrs += BLOCK_SIZE_K + + c = accumulator.to(tl.float16) + c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :] + c_mask = (offs_am[:, None] < M) & (offs_bn[None, :] < N) + tl.store(c_ptrs, c, mask=c_mask) + +# code based https://github.com/fpgaminer/GPTQ-triton +@triton.autotune( + configs=[ + triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8), + triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 256, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8), + triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8), + triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), + triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 256, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), + triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), + triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), + triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), + triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), + triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2), + triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2), + ], + key=['M', 'N', 'K'], +) + +@triton.jit +def trans_matmul_248_kernel(a_ptr, b_ptr, c_ptr, + scales_ptr, zeros_ptr, g_ptr, + M, N, K, bits, maxq, + stride_am, stride_ak, + stride_bk, stride_bn, + stride_cm, stride_cn, + stride_scales, stride_zeros, + BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, + GROUP_SIZE_M: tl.constexpr): + """ + Compute the matrix multiplication C = A x B. + A is of shape (M, N) float16 + B is of shape (K//8, N) int32 + C is of shape (M, K) float16 + scales is of shape (G, N) float16 + zeros is of shape (G, N) float16 + g_ptr is of shape (K) int32 + """ + infearure_per_bits = 32 // bits + + pid = tl.program_id(axis=0) + num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) + num_pid_k = tl.cdiv(K, BLOCK_SIZE_K) + num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) + num_pid_in_group = GROUP_SIZE_M * num_pid_k + group_id = pid // num_pid_in_group + first_pid_m = group_id * GROUP_SIZE_M + group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) + pid_m = first_pid_m + (pid % group_size_m) + pid_k = (pid % num_pid_in_group) // group_size_m + + offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) + offs_bk = pid_k * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K) + offs_n = tl.arange(0, BLOCK_SIZE_N) + a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_n[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_N) + a_mask = (offs_am[:, None] < M) + # b_ptrs is set up such that it repeats elements along the K axis 8 times + b_ptrs = b_ptr + ((offs_bk[:, None] // infearure_per_bits) * stride_bk + offs_n[None, :] * stride_bn) # (BLOCK_SIZE_K, BLOCK_SIZE_N) + g_ptrs = g_ptr + offs_bk + g_idx = tl.load(g_ptrs) + + # shifter is used to extract the N bits of each element in the 32-bit word from B + scales_ptrs = scales_ptr + offs_n[None, :] + g_idx[:, None] * stride_scales + zeros_ptrs = zeros_ptr + (offs_n[None, :] // infearure_per_bits) + g_idx[:, None] * stride_zeros + + shifter = (offs_bk % infearure_per_bits) * bits + zeros_shifter = (offs_n % infearure_per_bits) * bits + accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_K), dtype=tl.float32) + + for k in range(0, num_pid_n): + # Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop + scales = tl.load(scales_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,) + zeros = tl.load(zeros_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,) + + zeros = (zeros >> zeros_shifter[None, :]) & maxq + zeros = (zeros + 1) + + a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_N) + b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated + + # Now we need to unpack b (which is N-bit values) into 32-bit values + b = (b >> shifter[:, None]) & maxq # Extract the N-bit values + b = (b - zeros) * scales # Scale and shift + b = tl.trans(b) + # ! Convert to fp16 + b = b.to(tl.float16) + a = a.to(tl.float16) + + accumulator += tl.dot(a, b) + a_ptrs += BLOCK_SIZE_N + b_ptrs += BLOCK_SIZE_N + scales_ptrs += BLOCK_SIZE_N + zeros_ptrs += (BLOCK_SIZE_N // infearure_per_bits) + + c = accumulator.to(tl.float16) + c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bk[None, :] + c_mask = (offs_am[:, None] < M) & (offs_bk[None, :] < K) + tl.store(c_ptrs, c, mask=c_mask) + + +def triton_matmul(input, qweight, scales, qzeros, g_idx, bits, maxq): + output = torch.empty((input.shape[0], qweight.shape[1]), device='cuda', dtype=torch.float16) + grid = lambda META: (triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(qweight.shape[1], META['BLOCK_SIZE_N']),) + matmul_248_kernel[grid](input, qweight, output, + scales, qzeros, g_idx, + input.shape[0], qweight.shape[1], input.shape[1], bits, maxq, + input.stride(0), input.stride(1), + qweight.stride(0), qweight.stride(1), + output.stride(0), output.stride(1), + scales.stride(0), qzeros.stride(0)) + return output