Compare commits
5 Commits
d6791790ed
...
2f704b93c9
| Author | SHA1 | Date |
|---|---|---|
|
|
2f704b93c9 | |
|
|
73f51188bf | |
|
|
97804534b9 | |
|
|
8e5cf08479 | |
|
|
42ef3484a9 |
58
README.md
58
README.md
|
|
@ -5,6 +5,59 @@ Made some adjust for the code in peft and gptq for llama, and make it possible f
|
|||
pip install git+https://github.com/johnsmith0031/alpaca_lora_4bit@winglian-setup_pip
|
||||
```
|
||||
|
||||
# Model Server
|
||||
|
||||
Better inference performance with text_generation_webui, about <b>40% faster</b>
|
||||
|
||||
Simple expriment results:<br>
|
||||
7b model with groupsize=128 no act-order<br>
|
||||
improved from 13 tokens/sec to 20 tokens/sec
|
||||
|
||||
<b>Step:</b>
|
||||
1. run model server process
|
||||
2. run webui process with monkey patch
|
||||
|
||||
<b>Example</b>
|
||||
|
||||
run_server.sh
|
||||
```
|
||||
#!/bin/bash
|
||||
|
||||
export PYTHONPATH=$PYTHONPATH:./
|
||||
|
||||
CONFIG_PATH=
|
||||
MODEL_PATH=
|
||||
LORA_PATH=
|
||||
|
||||
VENV_PATH=
|
||||
source $VENV_PATH/bin/activate
|
||||
python ./scripts/run_server.py --config_path $CONFIG_PATH --model_path $MODEL_PATH --lora_path $LORA_PATH --groupsize=128 --quant_attn --port 5555 --pub_port 5556
|
||||
```
|
||||
|
||||
run_webui.sh
|
||||
```
|
||||
#!/bin/bash
|
||||
|
||||
if [ -f "server2.py" ]; then
|
||||
rm server2.py
|
||||
fi
|
||||
echo "import custom_model_server_monkey_patch" > server2.py
|
||||
cat server.py >> server2.py
|
||||
|
||||
export PYTHONPATH=$PYTHONPATH:../
|
||||
|
||||
VENV_PATH=
|
||||
source $VENV_PATH/bin/activate
|
||||
python server2.py --chat --listen
|
||||
```
|
||||
|
||||
<b>Note:</b>
|
||||
* quant_attn only support torch 2.0+
|
||||
* lora support is only for simple lora with only q_proj and v_proj
|
||||
* this patch breaks model selection, lora selection and training feature in webui
|
||||
|
||||
# Docker
|
||||
|
||||
## Quick start for running the chat UI
|
||||
|
||||
```
|
||||
|
|
@ -43,12 +96,13 @@ It's fast on a 3070 Ti mobile. Uses 5-6 GB of GPU RAM.
|
|||
* Removed bitsandbytes from requirements
|
||||
* Added pip installable branch based on winglian's PR
|
||||
* Added cuda backend quant attention and fused mlp from GPTQ_For_Llama.
|
||||
* Added lora patch for GPTQ_For_Llama triton backend.
|
||||
|
||||
* Added lora patch for GPTQ_For_Llama repo triton backend.<br>
|
||||
Usage:
|
||||
```
|
||||
from monkeypatch.gptq_for_llala_lora_monkey_patch import inject_lora_layers
|
||||
inject_lora_layers(model, lora_path, device, dtype)
|
||||
```
|
||||
* Added Model server for better inference performance with webui (40% faster than original webui which runs model and gradio in same process)
|
||||
|
||||
# Requirements
|
||||
gptq-for-llama <br>
|
||||
|
|
|
|||
|
|
@ -0,0 +1 @@
|
|||
from .server import ModelClient, ModelServer, _SentinelTokenStoppingCriteria
|
||||
|
|
@ -1,8 +1,7 @@
|
|||
from .. import autograd_4bit
|
||||
import time
|
||||
import torch
|
||||
from ..autograd_4bit import load_llama_model_4bit_low_ram, Autograd4bitQuantLinear
|
||||
from alpaca_lora_4bit.model_attn_mlp_patch import make_quant_attn, make_fused_mlp, inject_lora_layers
|
||||
from autograd_4bit import load_llama_model_4bit_low_ram, Autograd4bitQuantLinear
|
||||
from model_attn_mlp_patch import make_quant_attn, make_fused_mlp, inject_lora_layers
|
||||
import zmq
|
||||
from transformers import StoppingCriteria, StoppingCriteriaList
|
||||
from io import BytesIO
|
||||
|
|
@ -24,6 +23,28 @@ def clear_torch_cache():
|
|||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
# Copied from https://github.com/PygmalionAI/gradio-ui/
|
||||
class _SentinelTokenStoppingCriteria(StoppingCriteria):
|
||||
|
||||
def __init__(self, sentinel_token_ids: list, starting_idx: int):
|
||||
StoppingCriteria.__init__(self)
|
||||
self.sentinel_token_ids = sentinel_token_ids
|
||||
self.starting_idx = starting_idx
|
||||
|
||||
def __call__(self, input_ids: torch.LongTensor, _scores: torch.FloatTensor) -> bool:
|
||||
for sample in input_ids:
|
||||
trimmed_sample = sample[self.starting_idx:]
|
||||
|
||||
for i in range(len(self.sentinel_token_ids)):
|
||||
# Can't unfold, output is still too tiny. Skip.
|
||||
if trimmed_sample.shape[-1] < self.sentinel_token_ids[i].shape[-1]:
|
||||
continue
|
||||
for window in trimmed_sample.unfold(0, self.sentinel_token_ids[i].shape[-1], 1):
|
||||
if torch.all(torch.eq(self.sentinel_token_ids[i][0], window)):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
# Copy from text-generation-webui/modules/callbacks.py
|
||||
class Stream(StoppingCriteria):
|
||||
def __init__(self, callback_func=None):
|
||||
|
|
@ -1,4 +1,4 @@
|
|||
from server import ModelServer
|
||||
from model_server import ModelServer
|
||||
import argparse
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
|||
|
|
@ -1 +0,0 @@
|
|||
from .server import ModelClient, ModelServer
|
||||
|
|
@ -1,4 +1,4 @@
|
|||
from server import ModelClient
|
||||
from model_server import ModelClient
|
||||
from transformers import LlamaTokenizer
|
||||
|
||||
def load_model_llama(*args, **kwargs):
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
import modules.text_generation
|
||||
from modules.text_generation import *
|
||||
from modules.callbacks import _SentinelTokenStoppingCriteria
|
||||
from model_server import _SentinelTokenStoppingCriteria
|
||||
|
||||
def generate_reply_patched(question, state, eos_token=None, stopping_strings=[]):
|
||||
if shared.model_name == 'None' or shared.model is None:
|
||||
|
|
@ -115,34 +115,8 @@ def generate_reply_patched(question, state, eos_token=None, stopping_strings=[])
|
|||
# Stream the reply 1 token at a time.
|
||||
# This is based on the trick of using 'stopping_criteria' to create an iterator.
|
||||
elif not shared.args.flexgen:
|
||||
|
||||
# def generate_with_callback(callback=None, **kwargs):
|
||||
# kwargs['stopping_criteria'].append(Stream(callback_func=callback))
|
||||
# clear_torch_cache()
|
||||
# with torch.no_grad():
|
||||
# shared.model.generate(**kwargs)
|
||||
|
||||
# def generate_with_streaming(**kwargs):
|
||||
# return Iteratorize(generate_with_callback, kwargs, callback=None)
|
||||
|
||||
# if not shared.is_chat():
|
||||
# yield formatted_outputs(original_question, shared.model_name)
|
||||
|
||||
# with generate_with_streaming(**generate_params) as generator:
|
||||
# for output in generator:
|
||||
# if shared.soft_prompt:
|
||||
# output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
|
||||
|
||||
# new_tokens = len(output) - len(input_ids[0])
|
||||
# reply = decode(output[-new_tokens:], state['skip_special_tokens'])
|
||||
# if not shared.is_chat():
|
||||
# reply = original_question + apply_extensions('output', reply)
|
||||
|
||||
# if output[-1] in eos_token_ids:
|
||||
# break
|
||||
|
||||
# yield formatted_outputs(reply, shared.model_name)
|
||||
|
||||
|
||||
# Repalced Original with another socket server
|
||||
from queue import Queue
|
||||
queue = Queue()
|
||||
def callback_func(x, is_end=False):
|
||||
|
|
@ -151,9 +125,6 @@ def generate_reply_patched(question, state, eos_token=None, stopping_strings=[])
|
|||
else:
|
||||
queue.put(None)
|
||||
|
||||
# remove stopping_criteria
|
||||
generate_params.pop('stopping_criteria')
|
||||
|
||||
shared.model.callback_func = callback_func
|
||||
shared.model.generate(**generate_params)
|
||||
shared.model.start_recieving()
|
||||
|
|
|
|||
Loading…
Reference in New Issue