fix _SentinelTokenStoppingCriteria
This commit is contained in:
parent
d6791790ed
commit
42ef3484a9
|
|
@ -1 +1 @@
|
|||
from .server import ModelClient, ModelServer
|
||||
from .server import ModelClient, ModelServer, _SentinelTokenStoppingCriteria
|
||||
|
|
|
|||
|
|
@ -24,6 +24,28 @@ def clear_torch_cache():
|
|||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
# Copied from https://github.com/PygmalionAI/gradio-ui/
|
||||
class _SentinelTokenStoppingCriteria(StoppingCriteria):
|
||||
|
||||
def __init__(self, sentinel_token_ids: list, starting_idx: int):
|
||||
StoppingCriteria.__init__(self)
|
||||
self.sentinel_token_ids = sentinel_token_ids
|
||||
self.starting_idx = starting_idx
|
||||
|
||||
def __call__(self, input_ids: torch.LongTensor, _scores: torch.FloatTensor) -> bool:
|
||||
for sample in input_ids:
|
||||
trimmed_sample = sample[self.starting_idx:]
|
||||
|
||||
for i in range(len(self.sentinel_token_ids)):
|
||||
# Can't unfold, output is still too tiny. Skip.
|
||||
if trimmed_sample.shape[-1] < self.sentinel_token_ids[i].shape[-1]:
|
||||
continue
|
||||
for window in trimmed_sample.unfold(0, self.sentinel_token_ids[i].shape[-1], 1):
|
||||
if torch.all(torch.eq(self.sentinel_token_ids[i][0], window)):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
# Copy from text-generation-webui/modules/callbacks.py
|
||||
class Stream(StoppingCriteria):
|
||||
def __init__(self, callback_func=None):
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
import modules.text_generation
|
||||
from modules.text_generation import *
|
||||
from modules.callbacks import _SentinelTokenStoppingCriteria
|
||||
from alpaca_lora_4bit.server import _SentinelTokenStoppingCriteria
|
||||
|
||||
def generate_reply_patched(question, state, eos_token=None, stopping_strings=[]):
|
||||
if shared.model_name == 'None' or shared.model is None:
|
||||
|
|
@ -115,34 +115,8 @@ def generate_reply_patched(question, state, eos_token=None, stopping_strings=[])
|
|||
# Stream the reply 1 token at a time.
|
||||
# This is based on the trick of using 'stopping_criteria' to create an iterator.
|
||||
elif not shared.args.flexgen:
|
||||
|
||||
# def generate_with_callback(callback=None, **kwargs):
|
||||
# kwargs['stopping_criteria'].append(Stream(callback_func=callback))
|
||||
# clear_torch_cache()
|
||||
# with torch.no_grad():
|
||||
# shared.model.generate(**kwargs)
|
||||
|
||||
# def generate_with_streaming(**kwargs):
|
||||
# return Iteratorize(generate_with_callback, kwargs, callback=None)
|
||||
|
||||
# if not shared.is_chat():
|
||||
# yield formatted_outputs(original_question, shared.model_name)
|
||||
|
||||
# with generate_with_streaming(**generate_params) as generator:
|
||||
# for output in generator:
|
||||
# if shared.soft_prompt:
|
||||
# output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
|
||||
|
||||
# new_tokens = len(output) - len(input_ids[0])
|
||||
# reply = decode(output[-new_tokens:], state['skip_special_tokens'])
|
||||
# if not shared.is_chat():
|
||||
# reply = original_question + apply_extensions('output', reply)
|
||||
|
||||
# if output[-1] in eos_token_ids:
|
||||
# break
|
||||
|
||||
# yield formatted_outputs(reply, shared.model_name)
|
||||
|
||||
|
||||
# Repalced Original with another socket server
|
||||
from queue import Queue
|
||||
queue = Queue()
|
||||
def callback_func(x, is_end=False):
|
||||
|
|
@ -151,9 +125,6 @@ def generate_reply_patched(question, state, eos_token=None, stopping_strings=[])
|
|||
else:
|
||||
queue.put(None)
|
||||
|
||||
# remove stopping_criteria
|
||||
generate_params.pop('stopping_criteria')
|
||||
|
||||
shared.model.callback_func = callback_func
|
||||
shared.model.generate(**generate_params)
|
||||
shared.model.start_recieving()
|
||||
|
|
|
|||
Loading…
Reference in New Issue