Go to file
Andrey Glushenkov c991e2a091
Delete triton_test.py
2023-04-06 02:39:40 +03:00
autograd_4bit GPTQv2 support 2023-04-06 02:29:36 +03:00
text-generation-webui add v2 model support 2023-03-28 20:33:55 +08:00
.gitignore Fix repos. 2023-03-25 20:16:48 -07:00
Finetune4bConfig.py GPTQv2 support 2023-04-06 02:29:36 +03:00
LICENSE Create LICENSE 2023-03-25 10:17:44 +08:00
README.md GPTQv2 support 2023-04-06 02:29:36 +03:00
amp_wrapper.py add amp_wrapper for autocast support. 2023-03-30 19:57:19 +08:00
arg_parser.py add g_idx buffer.\nadd triton matmul utils for future support. 2023-04-02 21:29:06 +08:00
data.txt add data 2023-03-22 12:13:34 +08:00
finetune.py GPTQv2 support 2023-04-06 02:29:36 +03:00
gradient_checkpointing.py Fix repos. 2023-03-25 20:16:48 -07:00
inference.py add amp_wrapper for autocast support. 2023-03-30 19:57:19 +08:00
matmul_utils_4bit.py fix gpt4all training to more closely match the released logic, other small fixes and optimizations 2023-03-30 22:40:40 -04:00
requirements.txt GPTQv2 support 2023-04-06 02:29:36 +03:00
train_data.py fix gpt4all training to more closely match the released logic, other small fixes and optimizations 2023-03-30 22:40:40 -04:00
triton_utils.py Add files via upload 2023-04-06 02:38:06 +03:00

README.md

Alpaca Lora 4bit

Made some adjust for the code in peft and gptq for llama, and make it possible for lora finetuning with a 4 bits base model. The same adjustment can be made for 2, 3 and 8 bits.

Update Logs

  • Resolved numerically unstable issue
  • Reconstruct fp16 matrix from 4bit data and call torch.matmul largely increased the inference speed.
  • Added install script for windows and linux.
  • Added Gradient Checkpointing. Now It can finetune 30b model 4bit on a single GPU with 24G VRAM with Gradient Checkpointing enabled. (finetune.py updated) (but would reduce training speed, so if having enough VRAM this option is not needed)
  • Added install manual by s4rduk4r
  • Added pip install support by sterlind, preparing to merge changes upstream
  • Added V2 model support (with groupsize, both inference + finetune)
  • Added some options on finetune: set default to use eos_token instead of padding, add resume_checkpoint to continue training
  • Added offload support. load_llama_model_4bit_low_ram_and_offload_to_cpu function can be used.

Requirements

gptq-for-llama
peft
The specific version is inside requirements.txt

Install

~copy files from GPTQ-for-LLaMa into GPTQ-for-LLaMa path and re-compile cuda extension~
~copy files from peft/tuners/lora.py to peft path, replace it~

NOTE: Install scripts are no longer needed! requirements.txt now pulls from forks with the necessary patches.

pip install -r requirements.txt

Finetune

~The same finetune script from https://github.com/tloen/alpaca-lora can be used.~

After installation, this script can be used: GPTQv1:

python finetune.py

or

GPTQ_VERSION=1 python finetune.py

GPTQv2:

GPTQ_VERSION=2 python finetune.py

Inference

After installation, this script can be used:

python inference.py

Text Generation Webui Monkey Patch

Clone the latest version of text generation webui and copy all the files into ./text-generation-webui/

git clone https://github.com/oobabooga/text-generation-webui.git

Open server.py and insert a line at the beginning

import custom_monkey_patch # apply monkey patch
import gc
import io
...

Use the command to run

python server.py