alpaca_lora_4bit/finetune.py

153 lines
4.1 KiB
Python

import os
import sys
sys.path.insert(0, './repository/transformers/src')
sys.path.insert(0, './repository/GPTQ-for-LLaMa')
sys.path.insert(0, './repository/peft/src')
import peft
import peft.tuners.lora
assert peft.tuners.lora.is_gptq_available()
import time
import torch
import transformers
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
import accelerate
from modelutils import find_layers
from autograd_4bit import make_quant_for_4bit_autograd
from autograd_4bit import load_llama_model_4bit_low_ram
from datasets import load_dataset, Dataset
import json
from peft import prepare_model_for_int8_training, LoraConfig, get_peft_model, get_peft_model_state_dict, PeftModel
# Parameters
DATA_PATH = "./data.txt"
OUTPUT_DIR = "alpaca_lora"
lora_path_old = ''
config_path = './llama-13b-4bit/'
model_path = './llama-13b-4bit.pt'
MICRO_BATCH_SIZE = 1
BATCH_SIZE = 2
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE
EPOCHS = 3
LEARNING_RATE = 2e-4
CUTOFF_LEN = 256
LORA_R = 8
LORA_ALPHA = 16
LORA_DROPOUT = 0.05
VAL_SET_SIZE = 0
TARGET_MODULES = [
"q_proj",
"v_proj",
]
GRADIENT_CHECKPOINTING = False
GRADIENT_CHECKPOINTING_RATIO = 1
warmup_steps = 50
save_steps = 50
save_total_limit = 3
logging_steps = 10
# Load Basic Model
model, tokenizer = load_llama_model_4bit_low_ram(config_path, model_path)
# Config Lora
config = LoraConfig(
r=LORA_R,
lora_alpha=LORA_ALPHA,
target_modules=["q_proj", "v_proj"],
lora_dropout=LORA_DROPOUT,
bias="none",
task_type="CAUSAL_LM",
)
if lora_path_old == '':
model = get_peft_model(model, config)
else:
model = PeftModel.from_pretrained(model, lora_path_old)
print(lora_path_old, 'loaded')
# Scales to half
print('Fitting 4bit scales and zeros to half')
for n, m in model.named_modules():
if '4bit' in str(type(m)):
m.zeros = m.zeros.half()
m.scales = m.scales.half()
# Set tokenizer
tokenizer.pad_token_id = 0
# Load Data
with open(DATA_PATH, 'r', encoding='utf8') as file:
txt = file.read()
txt = txt.replace('\r\n', '\n')
rows = [r for r in txt.split('\n') if r != '']
data = Dataset.from_dict({"input": rows})
exceed_count = 0
def tokenize(prompt):
# there's probably a way to do this with the tokenizer settings
# but again, gotta move fast
global exceed_count
prompt = prompt['input']
result = tokenizer(
prompt,
truncation=True,
max_length=CUTOFF_LEN + 1,
padding="max_length",
)
d = {
"input_ids": result["input_ids"][:-1],
"attention_mask": result["attention_mask"][:-1],
}
if sum(d['attention_mask']) >= CUTOFF_LEN:
exceed_count += 1
return d
data = data.shuffle().map(lambda x: tokenize(x))
print('Train Data: {:.2f}%'.format(exceed_count / len(data) * 100), 'outliers')
train_data = data
# Use gradient checkpointing
if GRADIENT_CHECKPOINTING:
print('Applying gradient checkpointing ...')
from gradient_checkpointing import apply_gradient_checkpointing
apply_gradient_checkpointing(model, checkpoint_ratio=GRADIENT_CHECKPOINTING_RATIO)
trainer = transformers.Trainer(
model=model,
train_dataset=train_data,
args=transformers.TrainingArguments(
per_device_train_batch_size=MICRO_BATCH_SIZE,
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
warmup_steps=warmup_steps,
num_train_epochs=EPOCHS,
learning_rate=LEARNING_RATE,
fp16=True,
logging_steps=logging_steps,
evaluation_strategy="no",
save_strategy="steps",
eval_steps=None,
save_steps=save_steps,
output_dir=OUTPUT_DIR,
save_total_limit=save_total_limit,
load_best_model_at_end=False
),
data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
model.config.use_cache = False
# Set Model dict
old_state_dict = model.state_dict
model.state_dict = (
lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
).__get__(model, type(model))
# Run Trainer
trainer.train()
print('Train completed.')
# Save Model
model.save_pretrained(OUTPUT_DIR)
print('Model Saved.')