241 lines
7.7 KiB
Python
241 lines
7.7 KiB
Python
from gptq_llama import quant
|
|
import torch
|
|
import numpy as np
|
|
import torch.nn as nn
|
|
import time
|
|
|
|
|
|
# Global Buffer
|
|
buffer_mat_dic = {}
|
|
use_new = True
|
|
auto_switch = True
|
|
auto_switch_thd = 16
|
|
|
|
|
|
def get_buffer(shape_of_qweight, dtype=torch.float16, device='cuda'):
|
|
if shape_of_qweight not in buffer_mat_dic.keys():
|
|
buffer_mat_dic[shape_of_qweight] = torch.zeros((shape_of_qweight[0] * 8, shape_of_qweight[1]), dtype=dtype, device=device)
|
|
elif buffer_mat_dic[shape_of_qweight].device != device:
|
|
buffer_mat_dic[shape_of_qweight] = buffer_mat_dic[shape_of_qweight].to(device)
|
|
return buffer_mat_dic[shape_of_qweight]
|
|
|
|
|
|
def matmul4bit(x, qweight, scales, zeros):
|
|
"""
|
|
input x: (n, m)
|
|
qweight: (j, k)
|
|
where m == j*8
|
|
|
|
perform x @ qweight
|
|
|
|
return y:
|
|
"""
|
|
assert qweight.shape[0] * 8 == x.shape[-1]
|
|
outshape = tuple(list(x.shape[:-1]) + [qweight.shape[1]])
|
|
x = x.reshape(-1, x.shape[-1])
|
|
y = torch.zeros((x.shape[0], qweight.shape[-1]), dtype=torch.float32, device=x.device)
|
|
dtype = x.dtype
|
|
x = x.float()
|
|
quant.quant_cuda.vecquant4matmul(x, qweight, y, scales, zeros)
|
|
y = y.to(dtype)
|
|
return y.reshape(outshape)
|
|
|
|
|
|
def matmul4bit_transpose(x, qweight, scales, zeros):
|
|
"""
|
|
input x: (n, m)
|
|
qweight: (j, k)
|
|
where m == k
|
|
|
|
perform qweight @ x.T
|
|
|
|
return y:
|
|
"""
|
|
assert qweight.shape[1] == x.shape[-1]
|
|
outshape = tuple(list(x.shape[:-1]) + [qweight.shape[0] * 8])
|
|
x = x.reshape(-1, x.shape[-1])
|
|
y = torch.zeros((qweight.shape[0] * 8, x.shape[0]), dtype=torch.float32, device=x.device)
|
|
dtype = x.dtype
|
|
x = x.float()
|
|
quant.quant_cuda.vecquant4transposematmul(x, qweight, y, scales, zeros)
|
|
y = y.to(dtype)
|
|
return y.reshape(outshape)
|
|
|
|
|
|
def matmul4bit_half(x, qweight, scales, zeros):
|
|
"""
|
|
input x: (n, m)
|
|
qweight: (j, k)
|
|
where m == j*8
|
|
|
|
perform x @ qweight
|
|
|
|
return y:
|
|
"""
|
|
assert qweight.shape[0] * 8 == x.shape[-1]
|
|
outshape = tuple(list(x.shape[:-1]) + [qweight.shape[1]])
|
|
x = x.reshape(-1, x.shape[-1])
|
|
y = torch.zeros((x.shape[0], qweight.shape[-1]), dtype=x.dtype, device=x.device)
|
|
dtype = x.dtype
|
|
quant.quant_cuda.vecquant4matmul_half(x, qweight, y, scales, zeros)
|
|
y = y.to(dtype)
|
|
return y.reshape(outshape)
|
|
|
|
|
|
def matmul4bit_transpose_half(x, qweight, scales, zeros):
|
|
"""
|
|
input x: (n, m)
|
|
qweight: (j, k)
|
|
where m == k
|
|
|
|
perform qweight @ x.T
|
|
|
|
return y:
|
|
"""
|
|
assert qweight.shape[1] == x.shape[-1]
|
|
outshape = tuple(list(x.shape[:-1]) + [qweight.shape[0] * 8])
|
|
x = x.reshape(-1, x.shape[-1])
|
|
y = torch.zeros((qweight.shape[0] * 8, x.shape[0]), dtype=x.dtype, device=x.device)
|
|
dtype = x.dtype
|
|
quant.quant_cuda.vecquant4transposematmul_half(x, qweight, y, scales, zeros)
|
|
y = y.to(dtype)
|
|
return y.reshape(outshape)
|
|
|
|
|
|
def fast_4bit_forward(x, qweight, scales, zeros, bias):
|
|
use_new_flag = use_new
|
|
if auto_switch:
|
|
if x.shape[1] > auto_switch_thd:
|
|
use_new_flag = True
|
|
else:
|
|
use_new_flag = False
|
|
if use_new_flag:
|
|
buffer = get_buffer(qweight.shape, dtype=scales.dtype, device=qweight.device)
|
|
quant.quant_cuda.vecquant4recons(qweight, buffer, scales, zeros)
|
|
output = torch.matmul(x, buffer)
|
|
else:
|
|
output = matmul4bit(x, qweight, scales.float(), zeros.float())
|
|
output += bias
|
|
return output
|
|
|
|
|
|
class AutogradMatmul4bit(torch.autograd.Function):
|
|
|
|
@staticmethod
|
|
def forward(ctx, x, qweight, scales, zeros):
|
|
ctx.save_for_backward(qweight, scales, zeros)
|
|
buffer = get_buffer(qweight.shape, dtype=scales.dtype, device=qweight.device)
|
|
quant.quant_cuda.vecquant4recons(qweight, buffer, scales, zeros)
|
|
output = torch.matmul(x, buffer).clone()
|
|
return output
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
qweight, scales, zeros = ctx.saved_tensors
|
|
buffer = get_buffer(qweight.shape, dtype=scales.dtype, device=qweight.device)
|
|
quant.quant_cuda.vecquant4recons(qweight, buffer, scales, zeros)
|
|
grad = torch.matmul(grad_output, buffer.T)
|
|
return grad, None, None, None
|
|
|
|
|
|
# Assumes layer is perfectly divisible into 256 * 256 blocks
|
|
class Autograd4bitQuantLinear(nn.Module):
|
|
|
|
def __init__(self, infeatures, outfeatures):
|
|
super().__init__()
|
|
bits = 4
|
|
self.in_features = infeatures
|
|
self.out_features = outfeatures
|
|
self.bits = bits
|
|
self.register_buffer('zeros', torch.empty((outfeatures, 1)))
|
|
self.register_buffer('scales', torch.empty((outfeatures, 1)))
|
|
self.register_buffer('bias', torch.empty(outfeatures))
|
|
self.register_buffer(
|
|
'qweight', torch.empty((infeatures // 256 * (bits * 8), outfeatures), dtype=torch.int)
|
|
)
|
|
|
|
def forward(self, x):
|
|
if torch.is_grad_enabled():
|
|
out = AutogradMatmul4bit.apply(x, self.qweight, self.scales, self.zeros)
|
|
out += self.bias
|
|
else:
|
|
out = fast_4bit_forward(x, self.qweight, self.scales, self.zeros, self.bias)
|
|
return out
|
|
|
|
|
|
def make_quant_for_4bit_autograd(module, names, name=''):
|
|
if isinstance(module, Autograd4bitQuantLinear):
|
|
return
|
|
for attr in dir(module):
|
|
tmp = getattr(module, attr)
|
|
name1 = name + '.' + attr if name != '' else attr
|
|
if name1 in names:
|
|
setattr(
|
|
module, attr, Autograd4bitQuantLinear(tmp.in_features, tmp.out_features)
|
|
)
|
|
for name1, child in module.named_children():
|
|
make_quant_for_4bit_autograd(child, names, name + '.' + name1 if name != '' else name1)
|
|
|
|
|
|
def model_to_half(model):
|
|
model.half()
|
|
for n, m in model.named_modules():
|
|
if isinstance(m, Autograd4bitQuantLinear):
|
|
m.zeros = m.zeros.half()
|
|
m.scales = m.scales.half()
|
|
m.bias = m.bias.half()
|
|
print('Converted as Half.')
|
|
|
|
|
|
def model_to_float(model):
|
|
model.float()
|
|
for n, m in model.named_modules():
|
|
if isinstance(m, Autograd4bitQuantLinear):
|
|
m.zeros = m.zeros.float()
|
|
m.scales = m.scales.float()
|
|
m.bias = m.bias.float()
|
|
print('Converted as Float.')
|
|
|
|
|
|
def load_llama_model_4bit_low_ram(config_path, model_path, half=False, device_map="auto"):
|
|
import transformers
|
|
import accelerate
|
|
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
|
|
from gptq_llama.modelutils import find_layers
|
|
|
|
print("Loading Model ...")
|
|
t0 = time.time()
|
|
|
|
with accelerate.init_empty_weights():
|
|
config = LlamaConfig.from_pretrained(config_path)
|
|
torch.set_default_dtype(torch.half)
|
|
transformers.modeling_utils._init_weights = False
|
|
torch.set_default_dtype(torch.half)
|
|
model = LlamaForCausalLM(config)
|
|
torch.set_default_dtype(torch.float)
|
|
model = model.eval()
|
|
layers = find_layers(model)
|
|
for name in ['lm_head']:
|
|
if name in layers:
|
|
del layers[name]
|
|
make_quant_for_4bit_autograd(model, layers)
|
|
model = accelerate.load_checkpoint_and_dispatch(
|
|
model=model,
|
|
checkpoint=model_path,
|
|
device_map=device_map,
|
|
no_split_module_classes=["LlamaDecoderLayer"]
|
|
)
|
|
|
|
model.seqlen = 2048
|
|
|
|
if half:
|
|
model_to_half(model)
|
|
|
|
tokenizer = LlamaTokenizer.from_pretrained(config_path)
|
|
tokenizer.truncation_side = 'left'
|
|
|
|
print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
|
|
|
|
return model, tokenizer
|
|
|