alpaca_lora_4bit/autograd_4bit.py

241 lines
7.7 KiB
Python

from gptq_llama import quant
import torch
import numpy as np
import torch.nn as nn
import time
# Global Buffer
buffer_mat_dic = {}
use_new = True
auto_switch = True
auto_switch_thd = 16
def get_buffer(shape_of_qweight, dtype=torch.float16, device='cuda'):
if shape_of_qweight not in buffer_mat_dic.keys():
buffer_mat_dic[shape_of_qweight] = torch.zeros((shape_of_qweight[0] * 8, shape_of_qweight[1]), dtype=dtype, device=device)
elif buffer_mat_dic[shape_of_qweight].device != device:
buffer_mat_dic[shape_of_qweight] = buffer_mat_dic[shape_of_qweight].to(device)
return buffer_mat_dic[shape_of_qweight]
def matmul4bit(x, qweight, scales, zeros):
"""
input x: (n, m)
qweight: (j, k)
where m == j*8
perform x @ qweight
return y:
"""
assert qweight.shape[0] * 8 == x.shape[-1]
outshape = tuple(list(x.shape[:-1]) + [qweight.shape[1]])
x = x.reshape(-1, x.shape[-1])
y = torch.zeros((x.shape[0], qweight.shape[-1]), dtype=torch.float32, device=x.device)
dtype = x.dtype
x = x.float()
quant.quant_cuda.vecquant4matmul(x, qweight, y, scales, zeros)
y = y.to(dtype)
return y.reshape(outshape)
def matmul4bit_transpose(x, qweight, scales, zeros):
"""
input x: (n, m)
qweight: (j, k)
where m == k
perform qweight @ x.T
return y:
"""
assert qweight.shape[1] == x.shape[-1]
outshape = tuple(list(x.shape[:-1]) + [qweight.shape[0] * 8])
x = x.reshape(-1, x.shape[-1])
y = torch.zeros((qweight.shape[0] * 8, x.shape[0]), dtype=torch.float32, device=x.device)
dtype = x.dtype
x = x.float()
quant.quant_cuda.vecquant4transposematmul(x, qweight, y, scales, zeros)
y = y.to(dtype)
return y.reshape(outshape)
def matmul4bit_half(x, qweight, scales, zeros):
"""
input x: (n, m)
qweight: (j, k)
where m == j*8
perform x @ qweight
return y:
"""
assert qweight.shape[0] * 8 == x.shape[-1]
outshape = tuple(list(x.shape[:-1]) + [qweight.shape[1]])
x = x.reshape(-1, x.shape[-1])
y = torch.zeros((x.shape[0], qweight.shape[-1]), dtype=x.dtype, device=x.device)
dtype = x.dtype
quant.quant_cuda.vecquant4matmul_half(x, qweight, y, scales, zeros)
y = y.to(dtype)
return y.reshape(outshape)
def matmul4bit_transpose_half(x, qweight, scales, zeros):
"""
input x: (n, m)
qweight: (j, k)
where m == k
perform qweight @ x.T
return y:
"""
assert qweight.shape[1] == x.shape[-1]
outshape = tuple(list(x.shape[:-1]) + [qweight.shape[0] * 8])
x = x.reshape(-1, x.shape[-1])
y = torch.zeros((qweight.shape[0] * 8, x.shape[0]), dtype=x.dtype, device=x.device)
dtype = x.dtype
quant.quant_cuda.vecquant4transposematmul_half(x, qweight, y, scales, zeros)
y = y.to(dtype)
return y.reshape(outshape)
def fast_4bit_forward(x, qweight, scales, zeros, bias):
use_new_flag = use_new
if auto_switch:
if x.shape[1] > auto_switch_thd:
use_new_flag = True
else:
use_new_flag = False
if use_new_flag:
buffer = get_buffer(qweight.shape, dtype=scales.dtype, device=qweight.device)
quant.quant_cuda.vecquant4recons(qweight, buffer, scales, zeros)
output = torch.matmul(x, buffer)
else:
output = matmul4bit(x, qweight, scales.float(), zeros.float())
output += bias
return output
class AutogradMatmul4bit(torch.autograd.Function):
@staticmethod
def forward(ctx, x, qweight, scales, zeros):
ctx.save_for_backward(qweight, scales, zeros)
buffer = get_buffer(qweight.shape, dtype=scales.dtype, device=qweight.device)
quant.quant_cuda.vecquant4recons(qweight, buffer, scales, zeros)
output = torch.matmul(x, buffer).clone()
return output
@staticmethod
def backward(ctx, grad_output):
qweight, scales, zeros = ctx.saved_tensors
buffer = get_buffer(qweight.shape, dtype=scales.dtype, device=qweight.device)
quant.quant_cuda.vecquant4recons(qweight, buffer, scales, zeros)
grad = torch.matmul(grad_output, buffer.T)
return grad, None, None, None
# Assumes layer is perfectly divisible into 256 * 256 blocks
class Autograd4bitQuantLinear(nn.Module):
def __init__(self, infeatures, outfeatures):
super().__init__()
bits = 4
self.in_features = infeatures
self.out_features = outfeatures
self.bits = bits
self.register_buffer('zeros', torch.empty((outfeatures, 1)))
self.register_buffer('scales', torch.empty((outfeatures, 1)))
self.register_buffer('bias', torch.empty(outfeatures))
self.register_buffer(
'qweight', torch.empty((infeatures // 256 * (bits * 8), outfeatures), dtype=torch.int)
)
def forward(self, x):
if torch.is_grad_enabled():
out = AutogradMatmul4bit.apply(x, self.qweight, self.scales, self.zeros)
out += self.bias
else:
out = fast_4bit_forward(x, self.qweight, self.scales, self.zeros, self.bias)
return out
def make_quant_for_4bit_autograd(module, names, name=''):
if isinstance(module, Autograd4bitQuantLinear):
return
for attr in dir(module):
tmp = getattr(module, attr)
name1 = name + '.' + attr if name != '' else attr
if name1 in names:
setattr(
module, attr, Autograd4bitQuantLinear(tmp.in_features, tmp.out_features)
)
for name1, child in module.named_children():
make_quant_for_4bit_autograd(child, names, name + '.' + name1 if name != '' else name1)
def model_to_half(model):
model.half()
for n, m in model.named_modules():
if isinstance(m, Autograd4bitQuantLinear):
m.zeros = m.zeros.half()
m.scales = m.scales.half()
m.bias = m.bias.half()
print('Converted as Half.')
def model_to_float(model):
model.float()
for n, m in model.named_modules():
if isinstance(m, Autograd4bitQuantLinear):
m.zeros = m.zeros.float()
m.scales = m.scales.float()
m.bias = m.bias.float()
print('Converted as Float.')
def load_llama_model_4bit_low_ram(config_path, model_path, half=False, device_map="auto"):
import transformers
import accelerate
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
from gptq_llama.modelutils import find_layers
print("Loading Model ...")
t0 = time.time()
with accelerate.init_empty_weights():
config = LlamaConfig.from_pretrained(config_path)
torch.set_default_dtype(torch.half)
transformers.modeling_utils._init_weights = False
torch.set_default_dtype(torch.half)
model = LlamaForCausalLM(config)
torch.set_default_dtype(torch.float)
model = model.eval()
layers = find_layers(model)
for name in ['lm_head']:
if name in layers:
del layers[name]
make_quant_for_4bit_autograd(model, layers)
model = accelerate.load_checkpoint_and_dispatch(
model=model,
checkpoint=model_path,
device_map=device_map,
no_split_module_classes=["LlamaDecoderLayer"]
)
model.seqlen = 2048
if half:
model_to_half(model)
tokenizer = LlamaTokenizer.from_pretrained(config_path)
tokenizer.truncation_side = 'left'
print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
return model, tokenizer