alpaca_lora_4bit/train_data.py

274 lines
11 KiB
Python

import torch
from abc import ABC, abstractmethod
from typing import Dict, Any
from datasets import load_dataset, Dataset
from torch.utils.data import DataLoader
from transformers import DefaultDataCollator
import os
# Abstract train data loader
class ATrainData(ABC):
"""
"""
@abstractmethod
def __init__(self, dataset: str, val_set_size: int, tokenizer, cutoff_len: int) -> None:
"""
Args:
dataset (str): Path to dataset
val_set_size (int) : Size of validation set
tokenizer (_type_): Tokenizer
"""
self.tokenizer = tokenizer
self.dataset = dataset
self.val_set_size = val_set_size
self.cutoff_len = cutoff_len
self.train_data = None
self.val_data = None
@abstractmethod
def tokenize(self, prompt: str) -> Dict[str, Any]:
"""Tokenization method
Args:
prompt (str): Prompt string from dataset
Returns:
Dict[str, Any]: token
"""
pass
@abstractmethod
def prepare_data(self) -> None:
"""Loads dataset from file and prepares train_data property for trainer
"""
pass
# LLaMA txt train data loader
class TrainTxt(ATrainData):
def __init__(self, dataset: str, val_set_size: int, tokenizer, cutoff_len):
super().__init__(dataset, val_set_size, tokenizer, cutoff_len) # TODO: Validation size isn't used
self.cutoff_len = cutoff_len
self.exceed_count = 0
def tokenize(self, prompt: str, use_eos_token=True, **kwargs) -> Dict[str, Any]:
# there's probably a way to do this with the tokenizer settings
# but again, gotta move fast
if use_eos_token:
result = self.tokenizer(
prompt + self.tokenizer.eos_token,
truncation=True,
max_length=self.cutoff_len,
padding=False,
)
d = {
"input_ids": result["input_ids"],
"attention_mask": result["attention_mask"],
}
if (
d["input_ids"][-1] != self.tokenizer.eos_token_id
and len(d["input_ids"]) < self.cutoff_len
):
d["input_ids"].append(self.tokenizer.eos_token_id)
d["attention_mask"].append(1)
else:
result = self.tokenizer(
prompt,
truncation=True,
max_length=self.cutoff_len + 1,
padding="max_length",
)
d = {
"input_ids": result["input_ids"][:-1],
"attention_mask": result["attention_mask"][:-1],
}
if sum(d['attention_mask']) >= self.cutoff_len:
self.exceed_count += 1
return d
@classmethod
def format_new_rows(cls, rows, thd=128):
r_b = ''
new_rows = []
for row in rows:
if len(r_b) == 0:
r_b += row
else:
r_b += '\n' + row
if len(r_b) > thd:
new_rows.append(r_b)
r_b = ''
if len(r_b) > thd:
new_rows.append(r_b)
r_b = ''
return new_rows
def prepare_data(self, thd=-1, use_eos_token=True, **kwargs):
if os.path.isdir(self.dataset):
rows = []
for filename in os.listdir(self.dataset):
with open(self.dataset + filename, 'r', encoding='utf8') as file:
txt = file.read()
txt = txt.replace('\r\n', '\n').replace('\u3000', ' ')
rows += [r for r in txt.split('\n') if r != '']
else:
with open(self.dataset, 'r', encoding='utf8') as file:
txt = file.read()
txt = txt.replace('\r\n', '\n')
rows = [r for r in txt.split('\n') if r != '']
if thd != -1:
rows = self.format_new_rows(rows, thd=thd)
data = Dataset.from_dict({"input": rows})
data = data.shuffle().map(lambda x: self.tokenize(x["input"], use_eos_token=use_eos_token))
print('Train Data: {:.2f}%'.format(self.exceed_count / len(data) * 100), 'outliers')
self.train_data = data
# Stanford Alpaca-like Data
class TrainSAD(ATrainData):
def __init__(self, dataset: str, val_set_size: int, tokenizer, cutoff_len) -> None:
super().__init__(dataset, val_set_size, tokenizer, cutoff_len)
def tokenize(self, prompt: str, use_eos_token=True, **kwargs) -> Dict[str, Any]:
# there's probably a way to do this with the tokenizer settings
# but again, gotta move fast
if use_eos_token:
result = self.tokenizer(
prompt + self.tokenizer.eos_token,
truncation=True,
max_length=self.cutoff_len,
padding=False,
)
if (
result["input_ids"][-1] != self.tokenizer.eos_token_id
and len(result["input_ids"]) < self.cutoff_len
):
result["input_ids"].append(self.tokenizer.eos_token_id)
result["attention_mask"].append(1)
return result
else:
result = self.tokenizer(
prompt,
truncation=True,
max_length=self.cutoff_len + 1,
padding="max_length",
)
return {
"input_ids": result["input_ids"][:-1],
"attention_mask": result["attention_mask"][:-1],
}
def prepare_data(self, use_eos_token=True, **kwargs) -> None:
data = load_dataset("json", data_files=self.dataset)
if self.val_set_size > 0:
train_val = data["train"].train_test_split(
test_size=self.val_set_size, shuffle=True, seed=42 # ! Seed = 42 (?)
)
self.train_data = train_val["train"].shuffle().map(lambda x: self.generate_and_tokenize_prompt(x, use_eos_token=use_eos_token))
self.val_data = train_val["test"].shuffle().map(lambda x: self.generate_and_tokenize_prompt(x, use_eos_token=use_eos_token))
else:
self.train_data = data["train"].shuffle().map(lambda x: self.generate_and_tokenize_prompt(x, use_eos_token=use_eos_token))
self.val_data = None
# Auxiliary methods
def generate_prompt(self, data_point, **kwargs):
return "{0}\n\n{1}\n{2}\n\n{3}\n{4}\n\n{5}\n{6}".format(
"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.",
"### Instruction:",
data_point["instruction"],
"### Input:",
data_point["input"],
"### Response:",
data_point["output"]
)
def generate_and_tokenize_prompt(self, data_point, **kwargs):
prompt = self.generate_prompt(data_point, **kwargs)
return self.tokenize(prompt, **kwargs)
# GPT4All-like Data
class TrainGPT4All(ATrainData):
def __init__(self, dataset: str, val_set_size: int, tokenizer, cutoff_len) -> None:
super().__init__(dataset, val_set_size, tokenizer, cutoff_len)
def tokenize(self, prompt: str, use_eos_token=True, **kwargs) -> Dict[str, Any]:
pass
def tokenize_inputs(self, examples):
max_length = self.cutoff_len
input_ids = torch.full((len(examples["prompt"]), max_length), self.tokenizer.pad_token_id)
# ignore bos
newline_tokens = self.tokenizer("\n", return_tensors="pt")["input_ids"][0, 1:]
out = {"labels": [], "attention_mask": []}
for i, (prompt, response) in enumerate(zip(examples["prompt"], examples["response"])):
input_tokens = self.tokenizer(prompt, truncation=True, max_length=max_length // 2, return_tensors="pt")["input_ids"].squeeze()
if input_tokens.dim() == 0:
input_tokens = input_tokens.unsqueeze(0)
input_len = len(input_tokens)
# plus one since we remove bos from response
# but we subtract one since we want to add eos token
remaining_tokens = max_length - input_len - len(newline_tokens) + 1
# remove bos
target_tokens = self.tokenizer(response, truncation=True, max_length=remaining_tokens, return_tensors="pt")["input_ids"].squeeze()[1:]
input_ids[i, :input_len] = input_tokens
# add newline between prompt and response
newline_plus_inputs = input_len + len(newline_tokens)
input_ids[i, input_len: newline_plus_inputs] = newline_tokens
# add target tokens, remove bos
input_ids[i, newline_plus_inputs: newline_plus_inputs + len(target_tokens)] = target_tokens
# add eos token, enforce stopping if we don't truncate
# we don't want long code to stop generating if truncated during training
if newline_plus_inputs + len(target_tokens) < max_length:
input_ids[i, newline_plus_inputs + len(target_tokens)] = self.tokenizer.eos_token_id
labels = input_ids[i].clone()
labels[: newline_plus_inputs] = -100
labels[labels == self.tokenizer.pad_token_id] = -100
# to debug this, can set all values == -100 to the pad token, then assert that tokenizer.decode(labels, skip_special_tokens=True).strip() == response
attention_mask = input_ids[i].ne(self.tokenizer.pad_token_id).int()
out["labels"].append(labels)
out["attention_mask"].append(attention_mask)
out["input_ids"] = input_ids
out = {k: torch.stack(v) if isinstance(v, list) else v for k, v in out.items()}
return out
def prepare_data(self, **kwargs) -> None:
dataset = load_dataset("json", data_files=self.dataset)
self.val_data = None
if self.val_set_size > 0:
dataset = dataset["train"].train_test_split(
test_size=self.val_set_size, shuffle=True, seed=42 # ! Seed = 42 (?)
)
train_dataset, val_dataset = dataset["train"], dataset["test"]
# tokenize inputs and return labels and attention mask
val_dataset = val_dataset.map(
lambda ele: self.tokenize_inputs(ele),
batched=True,
remove_columns=["source", "prompt"],
)
self.val_data = val_dataset.with_format("torch")
else:
train_dataset = dataset["train"]
train_dataset = train_dataset.map(
lambda ele: self.tokenize_inputs(ele),
batched=True,
remove_columns=["source", "prompt"],
)
self.train_data = train_dataset.with_format("torch")