alpaca_lora_4bit/text-generation-webui/custom_monkey_patch.py

59 lines
1.9 KiB
Python

import time
import torch
import autograd_4bit
from autograd_4bit import load_llama_model_4bit_low_ram, Autograd4bitQuantLinear
from peft import PeftModel
from monkeypatch.peft_tuners_lora_monkey_patch import replace_peft_model_with_gptq_lora_model, Linear4bitLt
replace_peft_model_with_gptq_lora_model()
patch_encode_func = False
def load_model_llama(*args, **kwargs):
config_path = '../llama-13b-4bit/'
model_path = '../llama-13b-4bit.pt'
lora_path = '../alpaca13b_lora/'
print("Loading {} ...".format(model_path))
t0 = time.time()
model, tokenizer = load_llama_model_4bit_low_ram(config_path, model_path, groupsize=-1, is_v1_model=True)
model = PeftModel.from_pretrained(model, lora_path, device_map={'': 0}, torch_dtype=torch.float32)
print('{} Lora Applied.'.format(lora_path))
print('Apply auto switch and half')
for n, m in model.named_modules():
if isinstance(m, Autograd4bitQuantLinear) or isinstance(m, Linear4bitLt):
if m.is_v1_model:
m.zeros = m.zeros.half()
m.scales = m.scales.half()
m.bias = m.bias.half()
autograd_4bit.use_new = True
autograd_4bit.auto_switch = True
return model, tokenizer
# Monkey Patch
from modules import models
from modules import shared
models.load_model = load_model_llama
shared.args.model = 'llama-13b-4bit'
shared.settings['name1'] = 'You'
shared.settings['name2'] = 'Assistant'
shared.settings['chat_prompt_size_max'] = 2048
shared.settings['chat_prompt_size'] = 2048
if patch_encode_func:
from modules import text_generation
text_generation.encode_old = text_generation.encode
def encode_patched(*args, **kwargs):
input_ids = text_generation.encode_old(*args, **kwargs)
if input_ids[0,0] == 0:
input_ids = input_ids[:, 1:]
return input_ids
text_generation.encode = encode_patched
print('Encode Function Patched.')
print('Monkey Patch Completed.')