6.0 KiB
Alpaca Lora 4bit
Made some adjust for the code in peft and gptq for llama, and make it possible for lora finetuning with a 4 bits base model. The same adjustment can be made for 2, 3 and 8 bits.
- For those who want to use pip installable version:
pip install git+https://github.com/johnsmith0031/alpaca_lora_4bit@winglian-setup_pip
Model Server
Better inference performance with text_generation_webui, about 40% faster
Simple expriment results:
7b model with groupsize=128 no act-order
improved from 13 tokens/sec to 20 tokens/sec
Step:
- run model server process
- run webui process with monkey patch
Example
run_server.sh
#!/bin/bash
export PYTHONPATH=$PYTHONPATH:./
CONFIG_PATH=
MODEL_PATH=
LORA_PATH=
VENV_PATH=
source $VENV_PATH/bin/activate
python ./scripts/run_server.py --config_path $CONFIG_PATH --model_path $MODEL_PATH --lora_path $LORA_PATH --groupsize=128 --quant_attn --port 5555 --pub_port 5556
run_webui.sh
#!/bin/bash
if [ -f "server2.py" ]; then
rm server2.py
fi
echo "import custom_model_server_monkey_patch" > server2.py
cat server.py >> server2.py
export PYTHONPATH=$PYTHONPATH:../
VENV_PATH=
source $VENV_PATH/bin/activate
python server2.py --chat --listen
Note:
- quant_attn only support torch 2.0+
- lora support is only for simple lora with only q_proj and v_proj
- this patch breaks model selection, lora selection and training feature in webui
Docker
Quick start for running the chat UI
git clone https://github.com/johnsmith0031/alpaca_lora_4bit.git
cd alpaca_lora_4bit
DOCKER_BUILDKIT=1 docker build -t alpaca_lora_4bit . # build step can take 12 min
docker run --gpus=all -p 7860:7860 alpaca_lora_4bit
Point your browser to http://localhost:7860
Results
It's fast on a 3070 Ti mobile. Uses 5-6 GB of GPU RAM.
Development
- Install Manual by s4rduk4r: https://github.com/s4rduk4r/alpaca_lora_4bit_readme/blob/main/README.md
- Also Remember to create a venv if you do not want the packages be overwritten.
Update Logs
- Resolved numerically unstable issue
- Reconstruct fp16 matrix from 4bit data and call torch.matmul largely increased the inference speed.
- Added install script for windows and linux.
- Added Gradient Checkpointing. Now It can finetune 30b model 4bit on a single GPU with 24G VRAM with Gradient Checkpointing enabled. (finetune.py updated) (but would reduce training speed, so if having enough VRAM this option is not needed)
- Added install manual by s4rduk4r
- Added pip install support by sterlind, preparing to merge changes upstream
- Added V2 model support (with groupsize, both inference + finetune)
- Added some options on finetune: set default to use eos_token instead of padding, add resume_checkpoint to continue training
- Added offload support. load_llama_model_4bit_low_ram_and_offload_to_cpu function can be used.
- Added monkey patch for text generation webui for fixing initial eos token issue.
- Added Flash attention support. (Use --flash-attention)
- Added Triton backend to support model using groupsize and act-order. (Use --backend=triton)
- Added g_idx support in cuda backend (need recompile cuda kernel)
- Added xformers support
- Removed triton, flash-atten from requirements.txt for compatibility
- Removed bitsandbytes from requirements
- Added pip installable branch based on winglian's PR
- Added cuda backend quant attention and fused mlp from GPTQ_For_Llama.
- Added lora patch for GPTQ_For_Llama repo triton backend.
Usage:
from monkeypatch.gptq_for_llala_lora_monkey_patch import inject_lora_layers
inject_lora_layers(model, lora_path, device, dtype)
- Added Model server for better inference performance with webui (40% faster than original webui which runs model and gradio in same process)
Requirements
gptq-for-llama
peft
The specific version is inside requirements.txt
Install
pip install -r requirements.txt
Finetune
After installation, this script can be used. Use --v1 flag for v1 model.
python finetune.py ./data.txt \
--ds_type=txt \
--lora_out_dir=./test/ \
--llama_q4_config_dir=./llama-7b-4bit/ \
--llama_q4_model=./llama-7b-4bit.pt \
--mbatch_size=1 \
--batch_size=2 \
--epochs=3 \
--lr=3e-4 \
--cutoff_len=256 \
--lora_r=8 \
--lora_alpha=16 \
--lora_dropout=0.05 \
--warmup_steps=5 \
--save_steps=50 \
--save_total_limit=3 \
--logging_steps=5 \
--groupsize=-1 \
--v1 \
--xformers \
--backend=cuda
Inference
After installation, this script can be used:
python inference.py
Text Generation Webui Monkey Patch
Clone the latest version of text generation webui and copy all the files into ./text-generation-webui/
git clone https://github.com/oobabooga/text-generation-webui.git
Open server.py and insert a line at the beginning
import custom_monkey_patch # apply monkey patch
...
Use the command to run
python server.py
monkey patch inside webui
Currently the webui support using this repo by the monkeypatch inside it.
You can simply clone this repo to ./repositories/ in the path of text generation webui.
Flash Attention
It seems that we can apply a monkey patch for llama model. To use it, simply download the file from MonkeyPatch. And also, flash-attention is needed, and currently do not support pytorch 2.0. Just add --flash-attention to use it for finetuning.
Xformers
- Install
pip install xformers
- Usage
from monkeypatch.llama_attn_hijack_xformers import hijack_llama_attention
hijack_llama_attention()
Quant Attention and MLP Patch
Note: Currently does not support peft lora, but can use inject_lora_layers to load simple lora with only q_proj and v_proj.
Usage:
from model_attn_mlp_patch import make_quant_attn, make_fused_mlp, inject_lora_layers
make_quant_attn(model)
make_fused_mlp(model)
# Lora
inject_lora_layers(model, lora_path)
