import matmul_utils_4bit as mm4b import torch import torch.nn as nn import time import math class AutogradMatmul4bit(torch.autograd.Function): @staticmethod def forward(ctx, x, qweight, scales, zeros, groupsize=-1): ctx.save_for_backward(qweight, scales, zeros) ctx.groupsize = groupsize if groupsize == -1: output = mm4b._matmul4bit_v1_recons(x, qweight, scales, zeros) else: output = mm4b._matmul4bit_v2_recons(x, qweight, scales, zeros, groupsize) output = output.clone() return output @staticmethod def backward(ctx, grad_output): qweight, scales, zeros = ctx.saved_tensors groupsize = ctx.groupsize if groupsize == -1: grad = mm4b._matmul4bit_v1_recons(grad_output, qweight, scales, zeros, transpose=True) else: grad = mm4b._matmul4bit_v2_recons(grad_output, qweight, scales, zeros, groupsize=groupsize, transpose=True) return grad, None, None, None, None # Assumes layer is perfectly divisible into 256 * 256 blocks class Autograd4bitQuantLinear(nn.Module): def __init__(self, infeatures, outfeatures, groupsize=-1): super().__init__() bits = 4 self.in_features = infeatures self.out_features = outfeatures self.bits = bits self.groupsize = groupsize if groupsize == -1: self.register_buffer('zeros', torch.empty((outfeatures, 1))) self.register_buffer('scales', torch.empty((outfeatures, 1))) else: self.register_buffer('qzeros', torch.empty((math.ceil(infeatures/groupsize), outfeatures // 256 * (bits * 8)), dtype=torch.int) ) self.register_buffer('scales', torch.empty((math.ceil(infeatures/groupsize), outfeatures))) self.register_buffer('g_idx', torch.tensor([i // self.groupsize for i in range(infeatures)], dtype = torch.int32)) self.bias = nn.Parameter(torch.empty(outfeatures)) self.register_buffer( 'qweight', torch.empty((infeatures // 256 * (bits * 8), outfeatures), dtype=torch.int) ) def forward(self, x): if torch.is_grad_enabled(): out = AutogradMatmul4bit.apply(x, self.qweight, self.scales, self.qzeros if self.groupsize != -1 else self.zeros, self.groupsize) out.add_(self.bias) else: out = mm4b.matmul4bit(x, self.qweight, self.scales, self.qzeros if self.groupsize != -1 else self.zeros, self.groupsize) out.add_(self.bias) return out def make_quant_for_4bit_autograd(module, names, name='', groupsize=-1): if isinstance(module, Autograd4bitQuantLinear): return for attr in dir(module): tmp = getattr(module, attr) name1 = name + '.' + attr if name != '' else attr if name1 in names: setattr( module, attr, Autograd4bitQuantLinear(tmp.in_features, tmp.out_features, groupsize=groupsize) ) for name1, child in module.named_children(): make_quant_for_4bit_autograd(child, names, name + '.' + name1 if name != '' else name1, groupsize=groupsize) def model_to_half(model): model.half() for n, m in model.named_modules(): if isinstance(m, Autograd4bitQuantLinear): if m.groupsize == -1: m.zeros = m.zeros.half() m.scales = m.scales.half() m.bias = m.bias.half() print('Converted as Half.') def model_to_float(model): model.float() for n, m in model.named_modules(): if isinstance(m, Autograd4bitQuantLinear): if m.groupsize == -1: m.zeros = m.zeros.float() m.scales = m.scales.float() m.bias = m.bias.float() print('Converted as Float.') def find_layers(module, layers=[nn.Conv2d, nn.Linear], name=''): if type(module) in layers: return {name: module} res = {} for name1, child in module.named_children(): res.update(find_layers( child, layers=layers, name=name + '.' + name1 if name != '' else name1 )) return res def load_llama_model_4bit_low_ram(config_path, model_path, groupsize=-1, half=False, device_map="auto", seqlen=2048): import accelerate from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer print("Loading Model ...") t0 = time.time() with accelerate.init_empty_weights(): config = LlamaConfig.from_pretrained(config_path) model = LlamaForCausalLM(config) model = model.eval() layers = find_layers(model) for name in ['lm_head']: if name in layers: del layers[name] make_quant_for_4bit_autograd(model, layers, groupsize=groupsize) model = accelerate.load_checkpoint_and_dispatch( model=model, checkpoint=model_path, device_map=device_map, no_split_module_classes=["LlamaDecoderLayer"] ) model.seqlen = seqlen if half: model_to_half(model) tokenizer = LlamaTokenizer.from_pretrained(config_path) tokenizer.truncation_side = 'left' print(f"Loaded the model in {(time.time()-t0):.2f} seconds.") return model, tokenizer def load_llama_model_4bit_low_ram_and_offload_to_cpu(config_path, model_path, lora_path=None, groupsize=-1, seqlen=2048, max_memory=None): import accelerate from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer if max_memory is None: max_memory = {0: '24Gib', 'cpu': '48Gib'} print("Loading Model ...") t0 = time.time() with accelerate.init_empty_weights(): config = LlamaConfig.from_pretrained(config_path) model = LlamaForCausalLM(config) model = model.eval() layers = find_layers(model) for name in ['lm_head']: if name in layers: del layers[name] make_quant_for_4bit_autograd(model, layers, groupsize=groupsize) accelerate.load_checkpoint_in_model(model, checkpoint=model_path, device_map={'': 'cpu'}) # rotary_emb fix for n, m in model.named_modules(): if 'rotary_emb' in n: cos_cached = m.cos_cached.clone().cpu() sin_cached = m.sin_cached.clone().cpu() break if lora_path is not None: from peft import PeftModel from peft.tuners.lora import Linear4bitLt model = PeftModel.from_pretrained(model, lora_path, device_map={'': 'cpu'}, torch_dtype=torch.float32) print('{} Lora Applied.'.format(lora_path)) model.seqlen = seqlen print('Apply half ...') for n, m in model.named_modules(): if isinstance(m, Autograd4bitQuantLinear) or ((lora_path is not None) and isinstance(m, Linear4bitLt)): if m.groupsize == -1: m.zeros = m.zeros.half() m.scales = m.scales.half() m.bias = m.bias.half() print('Dispatching model ...') device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LlamaDecoderLayer"]) model = accelerate.dispatch_model(model, device_map=device_map, offload_buffers=True, main_device=0) torch.cuda.empty_cache() print('Total {:.2f} Gib VRAM used.'.format(torch.cuda.memory_allocated() / 1024 / 1024)) # rotary_emb fix for n, m in model.named_modules(): if 'rotary_emb' in n: if getattr(m, '_hf_hook', None): if isinstance(m._hf_hook, accelerate.hooks.SequentialHook): hooks = m._hf_hook.hooks else: hooks = [m._hf_hook] for hook in hooks: if hook.offload: if n + '.sin_cached' not in hook.weights_map.dataset.state_dict.keys(): hook.weights_map.dataset.state_dict[n + '.sin_cached'] = sin_cached.clone().cpu() hook.weights_map.dataset.state_dict[n + '.cos_cached'] = cos_cached.clone().cpu() tokenizer = LlamaTokenizer.from_pretrained(config_path) tokenizer.truncation_side = 'left' print(f"Loaded the model in {(time.time()-t0):.2f} seconds.") return model, tokenizer