use monkey patch instead of forked peft

This commit is contained in:
Wing Lian 2023-04-09 11:40:58 -04:00
parent f185b90c3e
commit c2b33bacc9
4 changed files with 202 additions and 1 deletions

View File

@ -20,6 +20,9 @@
from arg_parser import get_config
ft_config = get_config()
from monkeypatch.peft_tuners_lora_monkey_patch import replace_peft_model_with_gptq_lora_model
replace_peft_model_with_gptq_lora_model()
if ft_config.flash_attention:
from monkeypatch.llama_flash_attn_monkey_patch import replace_llama_attn_with_flash_attn
replace_llama_attn_with_flash_attn()

View File

@ -3,6 +3,9 @@ import sys
import time
import torch
from autograd_4bit import load_llama_model_4bit_low_ram, Autograd4bitQuantLinear
from monkeypatch.peft_tuners_lora_monkey_patch import replace_peft_model_with_gptq_lora_model
replace_peft_model_with_gptq_lora_model()
config_path = './llama-13b-4bit/'
model_path = './llama-13b-4bit.pt'
model, tokenizer = load_llama_model_4bit_low_ram(config_path, model_path, groupsize=-1)

View File

@ -0,0 +1,195 @@
import math
import re
import torch
import warnings
import bitsandbytes as bnb
from peft.tuners import lora
from peft.tuners.lora import is_bnb_available, Linear, Linear8bitLt, LoraLayer
from peft.utils import _get_submodules, PeftType
from torch import nn
from transformers.pytorch_utils import Conv1D
from autograd_4bit import Autograd4bitQuantLinear
class Linear4bitLt(Autograd4bitQuantLinear, LoraLayer):
# Lora implemented in a dense layer
def __init__(
self,
in_features,
out_features,
groupsize: int = -1,
is_v1_model: bool = False,
r: int = 0,
lora_alpha: int = 1,
lora_dropout: float = 0.0,
**kwargs,
):
Autograd4bitQuantLinear.__init__(
self,
in_features,
out_features,
groupsize,
is_v1_model
)
LoraLayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, merge_weights=False)
# Actual trainable parameters
if r > 0:
self.lora_A = nn.Linear(in_features, r, bias=False)
self.lora_B = nn.Linear(r, out_features, bias=False)
self.scaling = self.lora_alpha / self.r
# Freezing the pre-trained weight matrix
self.qweight.requires_grad = False
self.scales.requires_grad = False
if self.is_v1_model:
self.zeros.requires_grad = False
else:
self.qzeros.requires_grad = False
self.g_idx.requires_grad = False
self.bias.requires_grad = False
self.reset_parameters()
def reset_parameters(self):
if hasattr(self, "lora_A"):
# initialize A the same way as the default for nn.Linear and B to zero
nn.init.kaiming_uniform_(self.lora_A.weight, a=math.sqrt(5))
nn.init.zeros_(self.lora_B.weight)
def forward(self, x: torch.Tensor):
result = super().forward(x)
if self.disable_adapters:
return result
elif self.r > 0:
if not torch.is_autocast_enabled():
expected_dtype = result.dtype
if x.dtype != torch.float32:
x = x.float()
output = self.lora_B(self.lora_A(self.lora_dropout(x))).to(expected_dtype) * self.scaling
result += output
else:
output = self.lora_B(self.lora_A(self.lora_dropout(x))) * self.scaling
result += output
return result
class GPTQLoraModel(lora.LoraModel):
def _find_and_replace(self, adapter_name):
lora_config = self.peft_config[adapter_name]
loaded_in_8bit = getattr(self.model, "is_loaded_in_8bit", False)
if loaded_in_8bit and not is_bnb_available():
raise ImportError(
"To use Lora with 8-bit quantization, please install the `bitsandbytes` package. "
"You can install it with `pip install bitsandbytes`."
)
is_target_modules_in_base_model = False
kwargs = {
"r": lora_config.r,
"lora_alpha": lora_config.lora_alpha,
"lora_dropout": lora_config.lora_dropout,
"fan_in_fan_out": lora_config.fan_in_fan_out,
"init_lora_weights": lora_config.init_lora_weights,
}
key_list = [key for key, _ in self.model.named_modules()]
for key in key_list:
if isinstance(lora_config.target_modules, str):
target_module_found = re.fullmatch(lora_config.target_modules, key)
else:
target_module_found = any(key.endswith(target_key) for target_key in lora_config.target_modules)
if target_module_found:
if not is_target_modules_in_base_model:
is_target_modules_in_base_model = True
parent, target, target_name = _get_submodules(self.model, key)
bias = target.bias is not None
if isinstance(target, LoraLayer):
target.update_layer(
adapter_name,
lora_config.r,
lora_config.lora_alpha,
lora_config.lora_dropout,
lora_config.init_lora_weights,
)
else:
if loaded_in_8bit and isinstance(target, bnb.nn.Linear8bitLt):
kwargs.update(
{
"has_fp16_weights": target.state.has_fp16_weights,
"memory_efficient_backward": target.state.memory_efficient_backward,
"threshold": target.state.threshold,
"index": target.index,
}
)
new_module = Linear8bitLt(
adapter_name, target.in_features, target.out_features, bias=bias, **kwargs
)
else:
if isinstance(target, torch.nn.Linear):
in_features, out_features = target.in_features, target.out_features
if kwargs["fan_in_fan_out"]:
warnings.warn(
"fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. "
"Setting fan_in_fan_out to False."
)
kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = False
elif isinstance(target, Conv1D):
in_features, out_features = (
target.weight.ds_shape if hasattr(target.weight, "ds_shape") else target.weight.shape
)
if not kwargs["fan_in_fan_out"]:
warnings.warn(
"fan_in_fan_out is set to False but the target module is `Conv1D`. "
"Setting fan_in_fan_out to True."
)
kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = True
else:
raise ValueError(
f"Target module {target} is not supported. "
f"Currently, only `torch.nn.Linear` and `Conv1D` are supported."
)
new_module = Linear(adapter_name, in_features, out_features, bias=bias, **kwargs)
self._replace_module(parent, target_name, new_module, target)
if not is_target_modules_in_base_model:
raise ValueError(
f"Target modules {lora_config.target_modules} not found in the base model. "
f"Please check the target modules and try again."
)
def _replace_module(self, parent_module, child_name, new_module, old_module):
setattr(parent_module, child_name, new_module)
if isinstance(old_module, Autograd4bitQuantLinear) and isinstance(new_module, Linear4bitLt):
new_module.qweight = old_module.qweight
new_module.scales = old_module.scales
if old_module.is_v1_model:
new_module.zeros = old_module.zeros
else:
new_module.qzeros = old_module.qzeros
new_module.g_idx = old_module.g_idx
new_module.bias = old_module.bias
if getattr(old_module, "state", None) is not None:
new_module.state = old_module.state
new_module.to(old_module.qweight.device)
# dispatch to correct device
for name, module in new_module.named_modules():
if "lora_" in name:
module.to(old_module.qweight.device)
else:
new_module.weight = old_module.weight
if old_module.bias is not None:
new_module.bias = old_module.bias
if getattr(old_module, "state", None) is not None:
new_module.state = old_module.state
new_module.to(old_module.weight.device)
# dispatch to correct device
for name, module in new_module.named_modules():
if "lora_" in name:
module.to(old_module.weight.device)
def replace_peft_model_with_gptq_lora_model():
import peft.peft_model
peft.peft_model.PEFT_TYPE_TO_MODEL_MAPPING[PeftType.LORA] = GPTQLoraModel

View File

@ -7,6 +7,6 @@ safetensors
flash-attn
triton
colorama
git+https://github.com/huggingface/peft.git
git+https://github.com/huggingface/transformers.git
git+https://github.com/sterlind/GPTQ-for-LLaMa.git@lora_4bit
git+https://github.com/sterlind/peft.git