fix bug
This commit is contained in:
parent
76d7963dff
commit
9c3058c1de
|
|
@ -14,9 +14,11 @@ from autograd_4bit import Autograd4bitQuantLinear
|
|||
|
||||
|
||||
class Linear4bitLt(Autograd4bitQuantLinear, LoraLayer):
|
||||
# Lora implemented in a dense layer
|
||||
def __init__(
|
||||
|
||||
# Lora implemented in a dense layer
|
||||
def __init__(
|
||||
self,
|
||||
adapter_name,
|
||||
in_features,
|
||||
out_features,
|
||||
groupsize: int = -1,
|
||||
|
|
@ -25,20 +27,16 @@ class Linear4bitLt(Autograd4bitQuantLinear, LoraLayer):
|
|||
lora_alpha: int = 1,
|
||||
lora_dropout: float = 0.0,
|
||||
**kwargs,
|
||||
):
|
||||
Autograd4bitQuantLinear.__init__(
|
||||
self,
|
||||
in_features,
|
||||
out_features,
|
||||
groupsize,
|
||||
is_v1_model
|
||||
)
|
||||
LoraLayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, merge_weights=False)
|
||||
# Actual trainable parameters
|
||||
if r > 0:
|
||||
self.lora_A = nn.Linear(in_features, r, bias=False)
|
||||
self.lora_B = nn.Linear(r, out_features, bias=False)
|
||||
self.scaling = self.lora_alpha / self.r
|
||||
):
|
||||
Autograd4bitQuantLinear.__init__(
|
||||
self,
|
||||
in_features,
|
||||
out_features,
|
||||
groupsize,
|
||||
is_v1_model
|
||||
)
|
||||
LoraLayer.__init__(self, in_features=in_features, out_features=out_features)
|
||||
|
||||
# Freezing the pre-trained weight matrix
|
||||
self.qweight.requires_grad = False
|
||||
self.scales.requires_grad = False
|
||||
|
|
@ -48,31 +46,43 @@ class Linear4bitLt(Autograd4bitQuantLinear, LoraLayer):
|
|||
self.qzeros.requires_grad = False
|
||||
self.g_idx.requires_grad = False
|
||||
self.bias.requires_grad = False
|
||||
self.reset_parameters()
|
||||
|
||||
def reset_parameters(self):
|
||||
if hasattr(self, "lora_A"):
|
||||
# initialize A the same way as the default for nn.Linear and B to zero
|
||||
nn.init.kaiming_uniform_(self.lora_A.weight, a=math.sqrt(5))
|
||||
nn.init.zeros_(self.lora_B.weight)
|
||||
init_lora_weights = kwargs.pop("init_lora_weights", True)
|
||||
self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights)
|
||||
self.active_adapter = adapter_name
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
result = super().forward(x)
|
||||
def forward(self, x: torch.Tensor):
|
||||
result = super().forward(x)
|
||||
|
||||
if self.disable_adapters:
|
||||
if self.disable_adapters or self.active_adapter not in self.lora_A.keys():
|
||||
return result
|
||||
elif self.r[self.active_adapter] > 0:
|
||||
if not torch.is_autocast_enabled():
|
||||
expected_dtype = result.dtype
|
||||
|
||||
if x.dtype != torch.float32:
|
||||
x = x.float()
|
||||
output = (
|
||||
self.lora_B[self.active_adapter](
|
||||
self.lora_A[self.active_adapter](self.lora_dropout[self.active_adapter](x))
|
||||
).to(expected_dtype)
|
||||
* self.scaling[self.active_adapter]
|
||||
)
|
||||
else:
|
||||
output = (
|
||||
self.lora_B[self.active_adapter](
|
||||
self.lora_A[self.active_adapter](self.lora_dropout[self.active_adapter](x))
|
||||
)
|
||||
* self.scaling[self.active_adapter]
|
||||
)
|
||||
result += output
|
||||
return result
|
||||
elif self.r > 0:
|
||||
if not torch.is_autocast_enabled():
|
||||
expected_dtype = result.dtype
|
||||
|
||||
if x.dtype != torch.float32:
|
||||
x = x.float()
|
||||
output = self.lora_B(self.lora_A(self.lora_dropout(x))).to(expected_dtype) * self.scaling
|
||||
result += output
|
||||
else:
|
||||
output = self.lora_B(self.lora_A(self.lora_dropout(x))) * self.scaling
|
||||
result += output
|
||||
return result
|
||||
|
||||
@property
|
||||
def weight(self):
|
||||
class WeightDeviceClass:
|
||||
device = self.qweight.device
|
||||
return WeightDeviceClass()
|
||||
|
||||
|
||||
class GPTQLoraModel(lora.LoraModel):
|
||||
|
|
@ -124,6 +134,8 @@ class GPTQLoraModel(lora.LoraModel):
|
|||
new_module = Linear8bitLt(
|
||||
adapter_name, target.in_features, target.out_features, bias=bias, **kwargs
|
||||
)
|
||||
elif isinstance(target, Autograd4bitQuantLinear):
|
||||
new_module = Linear4bitLt(adapter_name, target.in_features, target.out_features, target.groupsize, target.is_v1_model, bias=bias, **kwargs)
|
||||
else:
|
||||
if isinstance(target, torch.nn.Linear):
|
||||
in_features, out_features = target.in_features, target.out_features
|
||||
|
|
|
|||
Loading…
Reference in New Issue