add g_idx support on cuda backend
This commit is contained in:
parent
b73f4e5e64
commit
8cf3bd4086
|
|
@ -14,7 +14,7 @@ class Finetune4bConfig:
|
|||
gradient_checkpointing_ratio: float,
|
||||
warmup_steps: int, save_steps: int, save_total_limit: int, logging_steps: int,
|
||||
checkpoint: bool, skip: bool, verbose: bool,
|
||||
txt_row_thd: int, use_eos_token: bool, groupsize: int,
|
||||
txt_row_thd: int, use_eos_token: bool, groupsize: int, v1: bool,
|
||||
local_rank: int, flash_attention: bool, backend: str
|
||||
):
|
||||
"""
|
||||
|
|
@ -46,7 +46,8 @@ class Finetune4bConfig:
|
|||
verbose (bool): If output log of training
|
||||
txt_row_thd (int): Custom row thd for txt file
|
||||
use_eos_token (bool): Use Eos token instead of padding with 0
|
||||
groupsize (int): Group size of V2 model, use -1 to load V1 model
|
||||
groupsize (int): Group size of V2 model
|
||||
v1 (bool): v1 model flag
|
||||
local_rank (int): local rank if using torch.distributed.launch
|
||||
flash_attention (bool): Enables flash attention
|
||||
"""
|
||||
|
|
@ -85,6 +86,7 @@ class Finetune4bConfig:
|
|||
if self.ddp:
|
||||
self.gradient_accumulation_steps = self.gradient_accumulation_steps // self.world_size
|
||||
self.groupsize = groupsize
|
||||
self.v1 = v1
|
||||
self.flash_attention = flash_attention
|
||||
self.backend = backend
|
||||
|
||||
|
|
@ -99,5 +101,5 @@ class Finetune4bConfig:
|
|||
f"{self.logging_steps=}\n" +\
|
||||
f"{self.checkpoint=}\n{self.skip=}\n" +\
|
||||
f"{self.world_size=}\n{self.ddp=}\n{self.device_map=}\n" +\
|
||||
f"{self.groupsize=}\n{self.backend=}\n"
|
||||
f"{self.groupsize=}\n{self.v1=}\n{self.backend=}\n"
|
||||
return s.replace("self.", "")
|
||||
|
|
|
|||
|
|
@ -62,7 +62,8 @@ def parse_commandline():
|
|||
parser_training.add_argument("--use_eos_token", default=1, type=int, help="Use eos token instead if padding with 0. enable with 1, disable with 0.")
|
||||
|
||||
# V2 model support
|
||||
parser_training.add_argument("--groupsize", type=int, default=-1, help="Groupsize of v2 model, use -1 to load v1 model")
|
||||
parser_training.add_argument("--groupsize", type=int, default=-1, help="Groupsize of v2 model")
|
||||
parser_training.add_argument("--v1", action="store_true", help="Use V1 model")
|
||||
|
||||
# Multi GPU Support
|
||||
parser_training.add_argument("--local_rank", type=int, default=0, help="local rank if using torch.distributed.launch")
|
||||
|
|
@ -107,6 +108,7 @@ def get_config() -> Finetune4bConfig:
|
|||
txt_row_thd=args["txt_row_thd"],
|
||||
use_eos_token=args["use_eos_token"]!=0,
|
||||
groupsize=args["groupsize"],
|
||||
v1=args["v1"],
|
||||
local_rank=args["local_rank"],
|
||||
flash_attention=args["flash_attention"],
|
||||
backend=args["backend"],
|
||||
|
|
|
|||
|
|
@ -12,27 +12,25 @@ class AutogradMatmul4bitCuda(torch.autograd.Function):
|
|||
|
||||
@staticmethod
|
||||
@custom_fwd(cast_inputs=torch.float16)
|
||||
def forward(ctx, x, qweight, scales, zeros, g_idx, bits, maxq, groupsize=-1):
|
||||
ctx.save_for_backward(qweight, scales, zeros)
|
||||
ctx.groupsize = groupsize
|
||||
if groupsize == -1:
|
||||
def forward(ctx, x, qweight, scales, zeros, g_idx, bits, maxq):
|
||||
ctx.save_for_backward(qweight, scales, zeros, g_idx)
|
||||
if g_idx is None:
|
||||
output = mm4b._matmul4bit_v1_recons(x, qweight, scales, zeros)
|
||||
else:
|
||||
output = mm4b._matmul4bit_v2_recons(x, qweight, scales, zeros, groupsize)
|
||||
output = mm4b._matmul4bit_v2_recons(x, qweight, scales, zeros, g_idx)
|
||||
output = output.clone()
|
||||
return output
|
||||
|
||||
@staticmethod
|
||||
@custom_bwd
|
||||
def backward(ctx, grad_output):
|
||||
qweight, scales, zeros = ctx.saved_tensors
|
||||
groupsize = ctx.groupsize
|
||||
qweight, scales, zeros, g_idx = ctx.saved_tensors
|
||||
if ctx.needs_input_grad[0]:
|
||||
if groupsize == -1:
|
||||
if g_idx is None:
|
||||
grad = mm4b._matmul4bit_v1_recons(grad_output, qweight, scales, zeros, transpose=True)
|
||||
else:
|
||||
grad = mm4b._matmul4bit_v2_recons(grad_output, qweight, scales, zeros, groupsize=groupsize, transpose=True)
|
||||
return grad, None, None, None, None, None, None, None
|
||||
grad = mm4b._matmul4bit_v2_recons(grad_output, qweight, scales, zeros, g_idx, transpose=True)
|
||||
return grad, None, None, None, None, None, None
|
||||
|
||||
|
||||
try:
|
||||
|
|
@ -42,7 +40,7 @@ try:
|
|||
|
||||
@staticmethod
|
||||
@custom_fwd(cast_inputs=torch.float16)
|
||||
def forward(ctx, x, qweight, scales, qzeros, g_idx, bits, maxq, groupsize=-1):
|
||||
def forward(ctx, x, qweight, scales, qzeros, g_idx, bits, maxq):
|
||||
output = tu.triton_matmul(x, qweight, scales, qzeros, g_idx, bits, maxq)
|
||||
ctx.save_for_backward(qweight, scales, qzeros, g_idx)
|
||||
ctx.bits, ctx.maxq = bits, maxq
|
||||
|
|
@ -58,7 +56,7 @@ try:
|
|||
|
||||
if ctx.needs_input_grad[0]:
|
||||
grad_input = tu.triton_matmul_transpose(grad_output, qweight, scales, qzeros, g_idx, bits, maxq)
|
||||
return grad_input, None, None, None, None, None, None, None
|
||||
return grad_input, None, None, None, None, None, None
|
||||
|
||||
except ImportError:
|
||||
print('Triton not found. Please run "pip install triton".')
|
||||
|
|
@ -86,9 +84,9 @@ def switch_backend_to(to_backend):
|
|||
raise ValueError('Backend not supported.')
|
||||
|
||||
|
||||
def matmul4bit_with_backend(x, qweight, scales, qzeros, g_idx, bits, maxq, groupsize):
|
||||
def matmul4bit_with_backend(x, qweight, scales, qzeros, g_idx, bits, maxq):
|
||||
if backend == 'cuda':
|
||||
return mm4b.matmul4bit(x, qweight, scales, qzeros, groupsize)
|
||||
return mm4b.matmul4bit(x, qweight, scales, qzeros, g_idx)
|
||||
elif backend == 'triton':
|
||||
assert qzeros.dtype == torch.int32
|
||||
return tu.triton_matmul(x, qweight, scales, qzeros, g_idx, bits, maxq)
|
||||
|
|
@ -99,17 +97,20 @@ def matmul4bit_with_backend(x, qweight, scales, qzeros, g_idx, bits, maxq, group
|
|||
# Assumes layer is perfectly divisible into 256 * 256 blocks
|
||||
class Autograd4bitQuantLinear(nn.Module):
|
||||
|
||||
def __init__(self, in_features, out_features, groupsize=-1):
|
||||
def __init__(self, in_features, out_features, groupsize=-1, is_v1_model=False):
|
||||
super().__init__()
|
||||
bits = 4
|
||||
self.in_features = in_features
|
||||
self.out_features = out_features
|
||||
self.bits = bits
|
||||
self.maxq = 2 ** self.bits - 1
|
||||
groupsize = groupsize if groupsize != -1 else in_features
|
||||
self.groupsize = groupsize
|
||||
if groupsize == -1:
|
||||
self.is_v1_model = is_v1_model
|
||||
if is_v1_model:
|
||||
self.register_buffer('zeros', torch.empty((out_features, 1)))
|
||||
self.register_buffer('scales', torch.empty((out_features, 1)))
|
||||
self.g_idx = None
|
||||
else:
|
||||
self.register_buffer('qzeros',
|
||||
torch.empty((math.ceil(in_features/groupsize), out_features // 256 * (bits * 8)), dtype=torch.int32)
|
||||
|
|
@ -125,19 +126,17 @@ class Autograd4bitQuantLinear(nn.Module):
|
|||
def forward(self, x):
|
||||
if torch.is_grad_enabled():
|
||||
out = AutogradMatmul4bit.apply(x, self.qweight, self.scales,
|
||||
self.qzeros if self.groupsize != -1 else self.zeros,
|
||||
self.g_idx, self.bits, self.maxq,
|
||||
self.groupsize)
|
||||
self.qzeros if not self.is_v1_model else self.zeros,
|
||||
self.g_idx, self.bits, self.maxq)
|
||||
else:
|
||||
out = matmul4bit_with_backend(x, self.qweight, self.scales,
|
||||
self.qzeros if self.groupsize != -1 else self.zeros,
|
||||
self.g_idx, self.bits, self.maxq,
|
||||
self.groupsize)
|
||||
self.qzeros if not self.is_v1_model else self.zeros,
|
||||
self.g_idx, self.bits, self.maxq)
|
||||
out += self.bias
|
||||
return out
|
||||
|
||||
|
||||
def make_quant_for_4bit_autograd(module, names, name='', groupsize=-1):
|
||||
def make_quant_for_4bit_autograd(module, names, name='', groupsize=-1, is_v1_model=False):
|
||||
if isinstance(module, Autograd4bitQuantLinear):
|
||||
return
|
||||
for attr in dir(module):
|
||||
|
|
@ -145,17 +144,17 @@ def make_quant_for_4bit_autograd(module, names, name='', groupsize=-1):
|
|||
name1 = name + '.' + attr if name != '' else attr
|
||||
if name1 in names:
|
||||
setattr(
|
||||
module, attr, Autograd4bitQuantLinear(tmp.in_features, tmp.out_features, groupsize=groupsize)
|
||||
module, attr, Autograd4bitQuantLinear(tmp.in_features, tmp.out_features, groupsize=groupsize, is_v1_model=is_v1_model)
|
||||
)
|
||||
for name1, child in module.named_children():
|
||||
make_quant_for_4bit_autograd(child, names, name + '.' + name1 if name != '' else name1, groupsize=groupsize)
|
||||
make_quant_for_4bit_autograd(child, names, name + '.' + name1 if name != '' else name1, groupsize=groupsize, is_v1_model=is_v1_model)
|
||||
|
||||
|
||||
def model_to_half(model):
|
||||
model.half()
|
||||
for n, m in model.named_modules():
|
||||
if isinstance(m, Autograd4bitQuantLinear):
|
||||
if m.groupsize == -1:
|
||||
if m.is_v1_model:
|
||||
m.zeros = m.zeros.half()
|
||||
m.scales = m.scales.half()
|
||||
m.bias = m.bias.half()
|
||||
|
|
@ -166,7 +165,7 @@ def model_to_float(model):
|
|||
model.float()
|
||||
for n, m in model.named_modules():
|
||||
if isinstance(m, Autograd4bitQuantLinear):
|
||||
if m.groupsize == -1:
|
||||
if m.is_v1_model:
|
||||
m.zeros = m.zeros.float()
|
||||
m.scales = m.scales.float()
|
||||
m.bias = m.bias.float()
|
||||
|
|
@ -184,7 +183,7 @@ def find_layers(module, layers=[nn.Conv2d, nn.Linear], name=''):
|
|||
return res
|
||||
|
||||
|
||||
def load_llama_model_4bit_low_ram(config_path, model_path, groupsize=-1, half=False, device_map="auto", seqlen=2048):
|
||||
def load_llama_model_4bit_low_ram(config_path, model_path, groupsize=-1, half=False, device_map="auto", seqlen=2048, is_v1_model=False):
|
||||
import accelerate
|
||||
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
|
||||
|
||||
|
|
@ -199,7 +198,7 @@ def load_llama_model_4bit_low_ram(config_path, model_path, groupsize=-1, half=Fa
|
|||
for name in ['lm_head']:
|
||||
if name in layers:
|
||||
del layers[name]
|
||||
make_quant_for_4bit_autograd(model, layers, groupsize=groupsize)
|
||||
make_quant_for_4bit_autograd(model, layers, groupsize=groupsize, is_v1_model=is_v1_model)
|
||||
model = accelerate.load_checkpoint_and_dispatch(
|
||||
model=model,
|
||||
checkpoint=model_path,
|
||||
|
|
@ -219,7 +218,7 @@ def load_llama_model_4bit_low_ram(config_path, model_path, groupsize=-1, half=Fa
|
|||
|
||||
return model, tokenizer
|
||||
|
||||
def load_llama_model_4bit_low_ram_and_offload(config_path, model_path, lora_path=None, groupsize=-1, seqlen=2048, max_memory=None):
|
||||
def load_llama_model_4bit_low_ram_and_offload(config_path, model_path, lora_path=None, groupsize=-1, seqlen=2048, max_memory=None, is_v1_model=False):
|
||||
import accelerate
|
||||
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
|
||||
|
||||
|
|
@ -237,7 +236,7 @@ def load_llama_model_4bit_low_ram_and_offload(config_path, model_path, lora_path
|
|||
for name in ['lm_head']:
|
||||
if name in layers:
|
||||
del layers[name]
|
||||
make_quant_for_4bit_autograd(model, layers, groupsize=groupsize)
|
||||
make_quant_for_4bit_autograd(model, layers, groupsize=groupsize, is_v1_model=is_v1_model)
|
||||
accelerate.load_checkpoint_in_model(model, checkpoint=model_path, device_map={'': 'cpu'})
|
||||
|
||||
# rotary_emb fix
|
||||
|
|
@ -258,7 +257,7 @@ def load_llama_model_4bit_low_ram_and_offload(config_path, model_path, lora_path
|
|||
print('Apply half ...')
|
||||
for n, m in model.named_modules():
|
||||
if isinstance(m, Autograd4bitQuantLinear) or ((lora_path is not None) and isinstance(m, Linear4bitLt)):
|
||||
if m.groupsize == -1:
|
||||
if m.is_v1_model:
|
||||
m.zeros = m.zeros.half()
|
||||
m.scales = m.scales.half()
|
||||
m.bias = m.bias.half()
|
||||
|
|
|
|||
|
|
@ -44,8 +44,6 @@ from peft import LoraConfig, get_peft_model, get_peft_model_state_dict, PeftMode
|
|||
# ! Config
|
||||
import train_data
|
||||
|
||||
|
||||
|
||||
# * Show loaded parameters
|
||||
if ft_config.local_rank == 0:
|
||||
print(f"{ft_config}\n")
|
||||
|
|
@ -57,7 +55,8 @@ if ft_config.gradient_checkpointing:
|
|||
model, tokenizer = load_llama_model_4bit_low_ram(ft_config.llama_q4_config_dir,
|
||||
ft_config.llama_q4_model,
|
||||
device_map=ft_config.device_map,
|
||||
groupsize=ft_config.groupsize)
|
||||
groupsize=ft_config.groupsize,
|
||||
is_v1_model=ft_config.v1)
|
||||
|
||||
# Config Lora
|
||||
lora_config = LoraConfig(
|
||||
|
|
|
|||
|
|
@ -45,7 +45,7 @@ def _matmul4bit_v1(x, qweight, scales, zeros):
|
|||
return y.reshape(outshape)
|
||||
|
||||
|
||||
def _matmul4bit_v2(x, qweight, scales, zeros, groupsize):
|
||||
def _matmul4bit_v2(x, qweight, scales, zeros, g_idx):
|
||||
"""
|
||||
input x: (n, m)
|
||||
qweight: (j, k)
|
||||
|
|
@ -63,7 +63,7 @@ def _matmul4bit_v2(x, qweight, scales, zeros, groupsize):
|
|||
y = torch.zeros((x.shape[0], qweight.shape[-1]), dtype=torch.float32, device=x.device)
|
||||
dtype = x.dtype
|
||||
x = x.half()
|
||||
quant_cuda.vecquant4matmul_faster(x, qweight, y, scales, zeros, groupsize, x.shape[-1] // 2)
|
||||
quant_cuda.vecquant4matmul_faster(x, qweight, y, scales, zeros, g_idx, x.shape[-1] // 2)
|
||||
y = y.to(dtype)
|
||||
return y.reshape(outshape)
|
||||
|
||||
|
|
@ -84,7 +84,7 @@ def _matmul4bit_v1_recons(x, qweight, scales, zeros, transpose=False):
|
|||
return output
|
||||
|
||||
|
||||
def _matmul4bit_v2_recons(x, qweight, scales, zeros, groupsize, transpose=False):
|
||||
def _matmul4bit_v2_recons(x, qweight, scales, zeros, g_idx, transpose=False):
|
||||
if debug:
|
||||
print('_matmul4bit_v2_recons')
|
||||
if not transpose:
|
||||
|
|
@ -92,7 +92,7 @@ def _matmul4bit_v2_recons(x, qweight, scales, zeros, groupsize, transpose=False)
|
|||
else:
|
||||
assert qweight.shape[1] == x.shape[-1]
|
||||
buffer = get_buffer(qweight.shape, dtype=scales.dtype, device=qweight.device)
|
||||
quant_cuda.vecquant4recons_v2(qweight, buffer, scales, zeros, groupsize)
|
||||
quant_cuda.vecquant4recons_v2(qweight, buffer, scales, zeros, g_idx)
|
||||
if not transpose:
|
||||
output = torch.matmul(x, buffer)
|
||||
else:
|
||||
|
|
@ -100,8 +100,9 @@ def _matmul4bit_v2_recons(x, qweight, scales, zeros, groupsize, transpose=False)
|
|||
return output
|
||||
|
||||
|
||||
def matmul4bit(x, qweight, scales, zeros, groupsize=-1):
|
||||
if groupsize == -1:
|
||||
def matmul4bit(x, qweight, scales, zeros, g_idx=None):
|
||||
# detect if zeros is int32
|
||||
if zeros.dtype == torch.int32:
|
||||
# use v1
|
||||
if use_new:
|
||||
if auto_switch:
|
||||
|
|
@ -112,21 +113,24 @@ def matmul4bit(x, qweight, scales, zeros, groupsize=-1):
|
|||
else:
|
||||
output = _matmul4bit_v1(x, qweight, scales.float(), zeros.float())
|
||||
else:
|
||||
if g_idx is None:
|
||||
g_idx = torch.zeros(qweight.shape[0] * 8, dtype=torch.int32, device=x.device)
|
||||
# use v2
|
||||
if use_new:
|
||||
if auto_switch:
|
||||
if np.prod(x.shape[:-1]) > auto_switch_thd:
|
||||
output = _matmul4bit_v2_recons(x.to(scales.dtype), qweight, scales, zeros, groupsize)
|
||||
output = _matmul4bit_v2_recons(x.to(scales.dtype), qweight, scales, zeros, g_idx)
|
||||
else:
|
||||
output = _matmul4bit_v2(x, qweight, scales.float(), zeros, groupsize)
|
||||
output = _matmul4bit_v2(x, qweight, scales.float(), zeros, g_idx)
|
||||
else:
|
||||
output = _matmul4bit_v2(x, qweight, scales.float(), zeros, groupsize)
|
||||
output = _matmul4bit_v2(x, qweight, scales.float(), zeros, g_idx)
|
||||
return output
|
||||
|
||||
|
||||
def v2_to_v1(scales, zeros):
|
||||
"""
|
||||
Convert zeros in V2 model to V1 model when group_num = 1, for debugging
|
||||
depreciated
|
||||
"""
|
||||
assert zeros.shape[0] == 1
|
||||
z_mat = torch.zeros((zeros.shape[1], 256), dtype=torch.int, device=zeros.device) + zeros.reshape((-1,1))
|
||||
|
|
|
|||
Loading…
Reference in New Issue