add g_idx support on cuda backend

This commit is contained in:
John Smith 2023-04-09 12:26:22 +08:00
parent b73f4e5e64
commit 8cf3bd4086
5 changed files with 54 additions and 48 deletions

View File

@ -14,7 +14,7 @@ class Finetune4bConfig:
gradient_checkpointing_ratio: float,
warmup_steps: int, save_steps: int, save_total_limit: int, logging_steps: int,
checkpoint: bool, skip: bool, verbose: bool,
txt_row_thd: int, use_eos_token: bool, groupsize: int,
txt_row_thd: int, use_eos_token: bool, groupsize: int, v1: bool,
local_rank: int, flash_attention: bool, backend: str
):
"""
@ -46,7 +46,8 @@ class Finetune4bConfig:
verbose (bool): If output log of training
txt_row_thd (int): Custom row thd for txt file
use_eos_token (bool): Use Eos token instead of padding with 0
groupsize (int): Group size of V2 model, use -1 to load V1 model
groupsize (int): Group size of V2 model
v1 (bool): v1 model flag
local_rank (int): local rank if using torch.distributed.launch
flash_attention (bool): Enables flash attention
"""
@ -85,6 +86,7 @@ class Finetune4bConfig:
if self.ddp:
self.gradient_accumulation_steps = self.gradient_accumulation_steps // self.world_size
self.groupsize = groupsize
self.v1 = v1
self.flash_attention = flash_attention
self.backend = backend
@ -99,5 +101,5 @@ class Finetune4bConfig:
f"{self.logging_steps=}\n" +\
f"{self.checkpoint=}\n{self.skip=}\n" +\
f"{self.world_size=}\n{self.ddp=}\n{self.device_map=}\n" +\
f"{self.groupsize=}\n{self.backend=}\n"
f"{self.groupsize=}\n{self.v1=}\n{self.backend=}\n"
return s.replace("self.", "")

View File

@ -62,7 +62,8 @@ def parse_commandline():
parser_training.add_argument("--use_eos_token", default=1, type=int, help="Use eos token instead if padding with 0. enable with 1, disable with 0.")
# V2 model support
parser_training.add_argument("--groupsize", type=int, default=-1, help="Groupsize of v2 model, use -1 to load v1 model")
parser_training.add_argument("--groupsize", type=int, default=-1, help="Groupsize of v2 model")
parser_training.add_argument("--v1", action="store_true", help="Use V1 model")
# Multi GPU Support
parser_training.add_argument("--local_rank", type=int, default=0, help="local rank if using torch.distributed.launch")
@ -107,6 +108,7 @@ def get_config() -> Finetune4bConfig:
txt_row_thd=args["txt_row_thd"],
use_eos_token=args["use_eos_token"]!=0,
groupsize=args["groupsize"],
v1=args["v1"],
local_rank=args["local_rank"],
flash_attention=args["flash_attention"],
backend=args["backend"],

View File

@ -12,27 +12,25 @@ class AutogradMatmul4bitCuda(torch.autograd.Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float16)
def forward(ctx, x, qweight, scales, zeros, g_idx, bits, maxq, groupsize=-1):
ctx.save_for_backward(qweight, scales, zeros)
ctx.groupsize = groupsize
if groupsize == -1:
def forward(ctx, x, qweight, scales, zeros, g_idx, bits, maxq):
ctx.save_for_backward(qweight, scales, zeros, g_idx)
if g_idx is None:
output = mm4b._matmul4bit_v1_recons(x, qweight, scales, zeros)
else:
output = mm4b._matmul4bit_v2_recons(x, qweight, scales, zeros, groupsize)
output = mm4b._matmul4bit_v2_recons(x, qweight, scales, zeros, g_idx)
output = output.clone()
return output
@staticmethod
@custom_bwd
def backward(ctx, grad_output):
qweight, scales, zeros = ctx.saved_tensors
groupsize = ctx.groupsize
qweight, scales, zeros, g_idx = ctx.saved_tensors
if ctx.needs_input_grad[0]:
if groupsize == -1:
if g_idx is None:
grad = mm4b._matmul4bit_v1_recons(grad_output, qweight, scales, zeros, transpose=True)
else:
grad = mm4b._matmul4bit_v2_recons(grad_output, qweight, scales, zeros, groupsize=groupsize, transpose=True)
return grad, None, None, None, None, None, None, None
grad = mm4b._matmul4bit_v2_recons(grad_output, qweight, scales, zeros, g_idx, transpose=True)
return grad, None, None, None, None, None, None
try:
@ -42,7 +40,7 @@ try:
@staticmethod
@custom_fwd(cast_inputs=torch.float16)
def forward(ctx, x, qweight, scales, qzeros, g_idx, bits, maxq, groupsize=-1):
def forward(ctx, x, qweight, scales, qzeros, g_idx, bits, maxq):
output = tu.triton_matmul(x, qweight, scales, qzeros, g_idx, bits, maxq)
ctx.save_for_backward(qweight, scales, qzeros, g_idx)
ctx.bits, ctx.maxq = bits, maxq
@ -58,7 +56,7 @@ try:
if ctx.needs_input_grad[0]:
grad_input = tu.triton_matmul_transpose(grad_output, qweight, scales, qzeros, g_idx, bits, maxq)
return grad_input, None, None, None, None, None, None, None
return grad_input, None, None, None, None, None, None
except ImportError:
print('Triton not found. Please run "pip install triton".')
@ -86,9 +84,9 @@ def switch_backend_to(to_backend):
raise ValueError('Backend not supported.')
def matmul4bit_with_backend(x, qweight, scales, qzeros, g_idx, bits, maxq, groupsize):
def matmul4bit_with_backend(x, qweight, scales, qzeros, g_idx, bits, maxq):
if backend == 'cuda':
return mm4b.matmul4bit(x, qweight, scales, qzeros, groupsize)
return mm4b.matmul4bit(x, qweight, scales, qzeros, g_idx)
elif backend == 'triton':
assert qzeros.dtype == torch.int32
return tu.triton_matmul(x, qweight, scales, qzeros, g_idx, bits, maxq)
@ -99,17 +97,20 @@ def matmul4bit_with_backend(x, qweight, scales, qzeros, g_idx, bits, maxq, group
# Assumes layer is perfectly divisible into 256 * 256 blocks
class Autograd4bitQuantLinear(nn.Module):
def __init__(self, in_features, out_features, groupsize=-1):
def __init__(self, in_features, out_features, groupsize=-1, is_v1_model=False):
super().__init__()
bits = 4
self.in_features = in_features
self.out_features = out_features
self.bits = bits
self.maxq = 2 ** self.bits - 1
groupsize = groupsize if groupsize != -1 else in_features
self.groupsize = groupsize
if groupsize == -1:
self.is_v1_model = is_v1_model
if is_v1_model:
self.register_buffer('zeros', torch.empty((out_features, 1)))
self.register_buffer('scales', torch.empty((out_features, 1)))
self.g_idx = None
else:
self.register_buffer('qzeros',
torch.empty((math.ceil(in_features/groupsize), out_features // 256 * (bits * 8)), dtype=torch.int32)
@ -125,19 +126,17 @@ class Autograd4bitQuantLinear(nn.Module):
def forward(self, x):
if torch.is_grad_enabled():
out = AutogradMatmul4bit.apply(x, self.qweight, self.scales,
self.qzeros if self.groupsize != -1 else self.zeros,
self.g_idx, self.bits, self.maxq,
self.groupsize)
self.qzeros if not self.is_v1_model else self.zeros,
self.g_idx, self.bits, self.maxq)
else:
out = matmul4bit_with_backend(x, self.qweight, self.scales,
self.qzeros if self.groupsize != -1 else self.zeros,
self.g_idx, self.bits, self.maxq,
self.groupsize)
self.qzeros if not self.is_v1_model else self.zeros,
self.g_idx, self.bits, self.maxq)
out += self.bias
return out
def make_quant_for_4bit_autograd(module, names, name='', groupsize=-1):
def make_quant_for_4bit_autograd(module, names, name='', groupsize=-1, is_v1_model=False):
if isinstance(module, Autograd4bitQuantLinear):
return
for attr in dir(module):
@ -145,17 +144,17 @@ def make_quant_for_4bit_autograd(module, names, name='', groupsize=-1):
name1 = name + '.' + attr if name != '' else attr
if name1 in names:
setattr(
module, attr, Autograd4bitQuantLinear(tmp.in_features, tmp.out_features, groupsize=groupsize)
module, attr, Autograd4bitQuantLinear(tmp.in_features, tmp.out_features, groupsize=groupsize, is_v1_model=is_v1_model)
)
for name1, child in module.named_children():
make_quant_for_4bit_autograd(child, names, name + '.' + name1 if name != '' else name1, groupsize=groupsize)
make_quant_for_4bit_autograd(child, names, name + '.' + name1 if name != '' else name1, groupsize=groupsize, is_v1_model=is_v1_model)
def model_to_half(model):
model.half()
for n, m in model.named_modules():
if isinstance(m, Autograd4bitQuantLinear):
if m.groupsize == -1:
if m.is_v1_model:
m.zeros = m.zeros.half()
m.scales = m.scales.half()
m.bias = m.bias.half()
@ -166,7 +165,7 @@ def model_to_float(model):
model.float()
for n, m in model.named_modules():
if isinstance(m, Autograd4bitQuantLinear):
if m.groupsize == -1:
if m.is_v1_model:
m.zeros = m.zeros.float()
m.scales = m.scales.float()
m.bias = m.bias.float()
@ -184,7 +183,7 @@ def find_layers(module, layers=[nn.Conv2d, nn.Linear], name=''):
return res
def load_llama_model_4bit_low_ram(config_path, model_path, groupsize=-1, half=False, device_map="auto", seqlen=2048):
def load_llama_model_4bit_low_ram(config_path, model_path, groupsize=-1, half=False, device_map="auto", seqlen=2048, is_v1_model=False):
import accelerate
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
@ -199,7 +198,7 @@ def load_llama_model_4bit_low_ram(config_path, model_path, groupsize=-1, half=Fa
for name in ['lm_head']:
if name in layers:
del layers[name]
make_quant_for_4bit_autograd(model, layers, groupsize=groupsize)
make_quant_for_4bit_autograd(model, layers, groupsize=groupsize, is_v1_model=is_v1_model)
model = accelerate.load_checkpoint_and_dispatch(
model=model,
checkpoint=model_path,
@ -219,7 +218,7 @@ def load_llama_model_4bit_low_ram(config_path, model_path, groupsize=-1, half=Fa
return model, tokenizer
def load_llama_model_4bit_low_ram_and_offload(config_path, model_path, lora_path=None, groupsize=-1, seqlen=2048, max_memory=None):
def load_llama_model_4bit_low_ram_and_offload(config_path, model_path, lora_path=None, groupsize=-1, seqlen=2048, max_memory=None, is_v1_model=False):
import accelerate
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
@ -237,7 +236,7 @@ def load_llama_model_4bit_low_ram_and_offload(config_path, model_path, lora_path
for name in ['lm_head']:
if name in layers:
del layers[name]
make_quant_for_4bit_autograd(model, layers, groupsize=groupsize)
make_quant_for_4bit_autograd(model, layers, groupsize=groupsize, is_v1_model=is_v1_model)
accelerate.load_checkpoint_in_model(model, checkpoint=model_path, device_map={'': 'cpu'})
# rotary_emb fix
@ -258,7 +257,7 @@ def load_llama_model_4bit_low_ram_and_offload(config_path, model_path, lora_path
print('Apply half ...')
for n, m in model.named_modules():
if isinstance(m, Autograd4bitQuantLinear) or ((lora_path is not None) and isinstance(m, Linear4bitLt)):
if m.groupsize == -1:
if m.is_v1_model:
m.zeros = m.zeros.half()
m.scales = m.scales.half()
m.bias = m.bias.half()

View File

@ -44,8 +44,6 @@ from peft import LoraConfig, get_peft_model, get_peft_model_state_dict, PeftMode
# ! Config
import train_data
# * Show loaded parameters
if ft_config.local_rank == 0:
print(f"{ft_config}\n")
@ -57,7 +55,8 @@ if ft_config.gradient_checkpointing:
model, tokenizer = load_llama_model_4bit_low_ram(ft_config.llama_q4_config_dir,
ft_config.llama_q4_model,
device_map=ft_config.device_map,
groupsize=ft_config.groupsize)
groupsize=ft_config.groupsize,
is_v1_model=ft_config.v1)
# Config Lora
lora_config = LoraConfig(

View File

@ -45,7 +45,7 @@ def _matmul4bit_v1(x, qweight, scales, zeros):
return y.reshape(outshape)
def _matmul4bit_v2(x, qweight, scales, zeros, groupsize):
def _matmul4bit_v2(x, qweight, scales, zeros, g_idx):
"""
input x: (n, m)
qweight: (j, k)
@ -63,7 +63,7 @@ def _matmul4bit_v2(x, qweight, scales, zeros, groupsize):
y = torch.zeros((x.shape[0], qweight.shape[-1]), dtype=torch.float32, device=x.device)
dtype = x.dtype
x = x.half()
quant_cuda.vecquant4matmul_faster(x, qweight, y, scales, zeros, groupsize, x.shape[-1] // 2)
quant_cuda.vecquant4matmul_faster(x, qweight, y, scales, zeros, g_idx, x.shape[-1] // 2)
y = y.to(dtype)
return y.reshape(outshape)
@ -84,7 +84,7 @@ def _matmul4bit_v1_recons(x, qweight, scales, zeros, transpose=False):
return output
def _matmul4bit_v2_recons(x, qweight, scales, zeros, groupsize, transpose=False):
def _matmul4bit_v2_recons(x, qweight, scales, zeros, g_idx, transpose=False):
if debug:
print('_matmul4bit_v2_recons')
if not transpose:
@ -92,7 +92,7 @@ def _matmul4bit_v2_recons(x, qweight, scales, zeros, groupsize, transpose=False)
else:
assert qweight.shape[1] == x.shape[-1]
buffer = get_buffer(qweight.shape, dtype=scales.dtype, device=qweight.device)
quant_cuda.vecquant4recons_v2(qweight, buffer, scales, zeros, groupsize)
quant_cuda.vecquant4recons_v2(qweight, buffer, scales, zeros, g_idx)
if not transpose:
output = torch.matmul(x, buffer)
else:
@ -100,8 +100,9 @@ def _matmul4bit_v2_recons(x, qweight, scales, zeros, groupsize, transpose=False)
return output
def matmul4bit(x, qweight, scales, zeros, groupsize=-1):
if groupsize == -1:
def matmul4bit(x, qweight, scales, zeros, g_idx=None):
# detect if zeros is int32
if zeros.dtype == torch.int32:
# use v1
if use_new:
if auto_switch:
@ -112,21 +113,24 @@ def matmul4bit(x, qweight, scales, zeros, groupsize=-1):
else:
output = _matmul4bit_v1(x, qweight, scales.float(), zeros.float())
else:
if g_idx is None:
g_idx = torch.zeros(qweight.shape[0] * 8, dtype=torch.int32, device=x.device)
# use v2
if use_new:
if auto_switch:
if np.prod(x.shape[:-1]) > auto_switch_thd:
output = _matmul4bit_v2_recons(x.to(scales.dtype), qweight, scales, zeros, groupsize)
output = _matmul4bit_v2_recons(x.to(scales.dtype), qweight, scales, zeros, g_idx)
else:
output = _matmul4bit_v2(x, qweight, scales.float(), zeros, groupsize)
output = _matmul4bit_v2(x, qweight, scales.float(), zeros, g_idx)
else:
output = _matmul4bit_v2(x, qweight, scales.float(), zeros, groupsize)
output = _matmul4bit_v2(x, qweight, scales.float(), zeros, g_idx)
return output
def v2_to_v1(scales, zeros):
"""
Convert zeros in V2 model to V1 model when group_num = 1, for debugging
depreciated
"""
assert zeros.shape[0] == 1
z_mat = torch.zeros((zeros.shape[1], 256), dtype=torch.int, device=zeros.device) + zeros.reshape((-1,1))