From 8a62560e6cb7d91e43f1976f477d7319a6e46b1f Mon Sep 17 00:00:00 2001 From: John Smith Date: Thu, 30 Mar 2023 11:21:21 +0800 Subject: [PATCH] add offload support --- autograd_4bit.py | 72 +++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 71 insertions(+), 1 deletion(-) diff --git a/autograd_4bit.py b/autograd_4bit.py index d89f116..166a2a1 100644 --- a/autograd_4bit.py +++ b/autograd_4bit.py @@ -146,4 +146,74 @@ def load_llama_model_4bit_low_ram(config_path, model_path, groupsize=-1, half=Fa print(f"Loaded the model in {(time.time()-t0):.2f} seconds.") return model, tokenizer - \ No newline at end of file + +def load_llama_model_4bit_low_ram_and_offload_to_cpu(config_path, model_path, lora_path=None, groupsize=-1, seqlen=2048, max_memory=None): + import accelerate + from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer + + if max_memory is None: + max_memory = {0: '24Gib', 'cpu': '48Gib'} + + print("Loading Model ...") + t0 = time.time() + + with accelerate.init_empty_weights(): + config = LlamaConfig.from_pretrained(config_path) + model = LlamaForCausalLM(config) + model = model.eval() + layers = find_layers(model) + for name in ['lm_head']: + if name in layers: + del layers[name] + make_quant_for_4bit_autograd(model, layers, groupsize=groupsize) + accelerate.load_checkpoint_in_model(model, checkpoint=model_path, device_map={'': 'cpu'}) + + # rotary_emb fix + for n, m in model.named_modules(): + if 'rotary_emb' in n: + cos_cached = m.cos_cached.clone().cpu() + sin_cached = m.sin_cached.clone().cpu() + break + + if lora_path is not None: + from peft import PeftModel + from peft.tuners.lora import Linear4bitLt + model = PeftModel.from_pretrained(model, lora_path, device_map={'': 'cpu'}, torch_dtype=torch.float32) + print('{} Lora Applied.'.format(lora_path)) + + model.seqlen = seqlen + + print('Apply half ...') + for n, m in model.named_modules(): + if isinstance(m, Autograd4bitQuantLinear) or ((lora_path is not None) and isinstance(m, Linear4bitLt)): + if m.groupsize == -1: + m.zeros = m.zeros.half() + m.scales = m.scales.half() + m.bias = m.bias.half() + + print('Dispatching model ...') + device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LlamaDecoderLayer"]) + model = accelerate.dispatch_model(model, device_map=device_map, offload_buffers=True, main_device=0) + torch.cuda.empty_cache() + print('Total {:.2f} Gib VRAM used.'.format(torch.cuda.memory_allocated() / 1024 / 1024)) + + # rotary_emb fix + for n, m in model.named_modules(): + if 'rotary_emb' in n: + if getattr(m, '_hf_hook', None): + if isinstance(m._hf_hook, accelerate.hooks.SequentialHook): + hooks = m._hf_hook.hooks + else: + hooks = [m._hf_hook] + for hook in hooks: + if hook.offload: + if n + '.sin_cached' not in hook.weights_map.dataset.state_dict.keys(): + hook.weights_map.dataset.state_dict[n + '.sin_cached'] = sin_cached.clone().cpu() + hook.weights_map.dataset.state_dict[n + '.cos_cached'] = cos_cached.clone().cpu() + + tokenizer = LlamaTokenizer.from_pretrained(config_path) + tokenizer.truncation_side = 'left' + + print(f"Loaded the model in {(time.time()-t0):.2f} seconds.") + + return model, tokenizer