commit
85e9cf004a
|
|
@ -15,7 +15,7 @@ class Finetune4bConfig:
|
||||||
warmup_steps: int, save_steps: int, save_total_limit: int, logging_steps: int,
|
warmup_steps: int, save_steps: int, save_total_limit: int, logging_steps: int,
|
||||||
checkpoint: bool, skip: bool, verbose: bool,
|
checkpoint: bool, skip: bool, verbose: bool,
|
||||||
txt_row_thd: int, use_eos_token: bool, groupsize: int,
|
txt_row_thd: int, use_eos_token: bool, groupsize: int,
|
||||||
local_rank: int,
|
local_rank: int, flash_attention: bool
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
|
|
@ -48,6 +48,7 @@ class Finetune4bConfig:
|
||||||
use_eos_token (bool): Use Eos token instead of padding with 0
|
use_eos_token (bool): Use Eos token instead of padding with 0
|
||||||
groupsize (int): Group size of V2 model, use -1 to load V1 model
|
groupsize (int): Group size of V2 model, use -1 to load V1 model
|
||||||
local_rank (int): local rank if using torch.distributed.launch
|
local_rank (int): local rank if using torch.distributed.launch
|
||||||
|
flash_attention (bool): Enables flash attention
|
||||||
"""
|
"""
|
||||||
self.dataset = dataset
|
self.dataset = dataset
|
||||||
self.ds_type = ds_type
|
self.ds_type = ds_type
|
||||||
|
|
@ -84,6 +85,7 @@ class Finetune4bConfig:
|
||||||
if self.ddp:
|
if self.ddp:
|
||||||
self.gradient_accumulation_steps = self.gradient_accumulation_steps // self.world_size
|
self.gradient_accumulation_steps = self.gradient_accumulation_steps // self.world_size
|
||||||
self.groupsize = groupsize
|
self.groupsize = groupsize
|
||||||
|
self.flash_attention = flash_attention
|
||||||
|
|
||||||
|
|
||||||
def __str__(self) -> str:
|
def __str__(self) -> str:
|
||||||
|
|
|
||||||
|
|
@ -66,6 +66,8 @@ def parse_commandline():
|
||||||
|
|
||||||
# Multi GPU Support
|
# Multi GPU Support
|
||||||
parser_training.add_argument("--local_rank", type=int, default=0, help="local rank if using torch.distributed.launch")
|
parser_training.add_argument("--local_rank", type=int, default=0, help="local rank if using torch.distributed.launch")
|
||||||
|
|
||||||
|
parser_training.add_argument("--flash_attention", help="enables flash attention, can improve performance and reduce VRAM use")
|
||||||
|
|
||||||
return vars(parser.parse_args())
|
return vars(parser.parse_args())
|
||||||
|
|
||||||
|
|
@ -102,4 +104,5 @@ def get_config() -> Finetune4bConfig:
|
||||||
use_eos_token=args["use_eos_token"]!=0,
|
use_eos_token=args["use_eos_token"]!=0,
|
||||||
groupsize=args["groupsize"],
|
groupsize=args["groupsize"],
|
||||||
local_rank=args["local_rank"],
|
local_rank=args["local_rank"],
|
||||||
|
flash_attention=args["flash_attention"],
|
||||||
)
|
)
|
||||||
|
|
|
||||||
10
finetune.py
10
finetune.py
|
|
@ -16,6 +16,13 @@
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
"""
|
"""
|
||||||
|
# Early load config to replace attn if needed
|
||||||
|
from arg_parser import get_config
|
||||||
|
ft_config = get_config()
|
||||||
|
|
||||||
|
if ft_config.flash_attention:
|
||||||
|
from monkeypatch.llama_flash_attn_monkey_patch import replace_llama_attn_with_flash_attn
|
||||||
|
replace_llama_attn_with_flash_attn()
|
||||||
|
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
|
|
@ -29,10 +36,9 @@ from autograd_4bit import load_llama_model_4bit_low_ram
|
||||||
from peft import LoraConfig, get_peft_model, get_peft_model_state_dict, PeftModel
|
from peft import LoraConfig, get_peft_model, get_peft_model_state_dict, PeftModel
|
||||||
|
|
||||||
# ! Config
|
# ! Config
|
||||||
from arg_parser import get_config
|
|
||||||
import train_data
|
import train_data
|
||||||
|
|
||||||
ft_config = get_config()
|
|
||||||
|
|
||||||
# * Show loaded parameters
|
# * Show loaded parameters
|
||||||
if ft_config.local_rank == 0:
|
if ft_config.local_rank == 0:
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,144 @@
|
||||||
|
from typing import List, Optional, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
|
||||||
|
import transformers
|
||||||
|
from transformers.models.llama.modeling_llama import LlamaConfig, LlamaRotaryEmbedding, apply_rotary_pos_emb
|
||||||
|
|
||||||
|
from einops import rearrange
|
||||||
|
|
||||||
|
from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func
|
||||||
|
from flash_attn.bert_padding import unpad_input, pad_input
|
||||||
|
|
||||||
|
class LlamaAttention(nn.Module):
|
||||||
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
config: LlamaConfig,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
hidden_size = config.hidden_size
|
||||||
|
num_heads = config.num_attention_heads
|
||||||
|
self.hidden_size = hidden_size
|
||||||
|
self.num_heads = num_heads
|
||||||
|
self.head_dim = self.hidden_size // num_heads
|
||||||
|
|
||||||
|
if (self.head_dim * num_heads) != self.hidden_size:
|
||||||
|
raise ValueError(
|
||||||
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
||||||
|
f" and `num_heads`: {num_heads}).")
|
||||||
|
self.q_proj = nn.Linear(
|
||||||
|
hidden_size,
|
||||||
|
num_heads * self.head_dim,
|
||||||
|
bias=False,
|
||||||
|
)
|
||||||
|
self.k_proj = nn.Linear(
|
||||||
|
hidden_size,
|
||||||
|
num_heads * self.head_dim,
|
||||||
|
bias=False,
|
||||||
|
)
|
||||||
|
self.v_proj = nn.Linear(
|
||||||
|
hidden_size,
|
||||||
|
num_heads * self.head_dim,
|
||||||
|
bias=False,
|
||||||
|
)
|
||||||
|
self.o_proj = nn.Linear(
|
||||||
|
num_heads * self.head_dim,
|
||||||
|
hidden_size,
|
||||||
|
bias=False,
|
||||||
|
)
|
||||||
|
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim)
|
||||||
|
|
||||||
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
||||||
|
return tensor.view(bsz, seq_len, self.num_heads,
|
||||||
|
self.head_dim).transpose(1, 2).contiguous()
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
output_attentions: bool = False,
|
||||||
|
use_cache: bool = False,
|
||||||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
|
||||||
|
Optional[Tuple[torch.Tensor]]]:
|
||||||
|
"""Input shape: Batch x Time x Channel
|
||||||
|
|
||||||
|
attention_mask: [bsz, q_len]
|
||||||
|
"""
|
||||||
|
bsz, q_len, _ = hidden_states.size()
|
||||||
|
|
||||||
|
query_states = self.q_proj(hidden_states).view(
|
||||||
|
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||||
|
key_states = self.k_proj(hidden_states).view(
|
||||||
|
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||||
|
value_states = self.v_proj(hidden_states).view(
|
||||||
|
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||||
|
# [bsz, q_len, nh, hd]
|
||||||
|
# [bsz, nh, q_len, hd]
|
||||||
|
|
||||||
|
kv_seq_len = key_states.shape[-2]
|
||||||
|
if past_key_value is not None:
|
||||||
|
kv_seq_len += past_key_value[0].shape[-2]
|
||||||
|
|
||||||
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||||
|
query_states, key_states = apply_rotary_pos_emb(query_states,
|
||||||
|
key_states,
|
||||||
|
cos,
|
||||||
|
sin,
|
||||||
|
position_ids)
|
||||||
|
# [bsz, nh, t, hd]
|
||||||
|
assert not output_attentions, "output_attentions is not supported"
|
||||||
|
assert not use_cache, "use_cache is not supported"
|
||||||
|
assert past_key_value is None, "past_key_value is not supported"
|
||||||
|
|
||||||
|
# Flash attention codes from
|
||||||
|
# https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/flash_attention.py
|
||||||
|
|
||||||
|
# transform the data into the format required by flash attention
|
||||||
|
qkv = torch.stack([query_states, key_states, value_states], dim=2) # [bsz, nh, 3, q_len, hd]
|
||||||
|
qkv = qkv.transpose(1, 3) # [bsz, q_len, 3, nh, hd]
|
||||||
|
# We have disabled _prepare_decoder_attention_mask in LlamaModel
|
||||||
|
# the attention_mask should be the same as the key_padding_mask
|
||||||
|
key_padding_mask = attention_mask
|
||||||
|
|
||||||
|
|
||||||
|
if key_padding_mask is None:
|
||||||
|
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
|
||||||
|
max_s = q_len
|
||||||
|
cu_q_lens = torch.arange(0, (bsz + 1) * q_len, step=q_len, dtype=torch.int32,
|
||||||
|
device=qkv.device)
|
||||||
|
output = flash_attn_unpadded_qkvpacked_func(
|
||||||
|
qkv, cu_q_lens, max_s, 0.0,
|
||||||
|
softmax_scale=None, causal=True
|
||||||
|
)
|
||||||
|
output = rearrange(output, '(b s) ... -> b s ...', b=bsz)
|
||||||
|
else:
|
||||||
|
nheads = qkv.shape[-2]
|
||||||
|
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
|
||||||
|
x_unpad, indices, cu_q_lens, max_s = unpad_input(x, key_padding_mask)
|
||||||
|
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
|
||||||
|
output_unpad = flash_attn_unpadded_qkvpacked_func(
|
||||||
|
x_unpad, cu_q_lens, max_s, 0.0,
|
||||||
|
softmax_scale=None, causal=True
|
||||||
|
)
|
||||||
|
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
|
||||||
|
indices, bsz, q_len),
|
||||||
|
'b s (h d) -> b s h d', h=nheads)
|
||||||
|
return self.o_proj(rearrange(output,
|
||||||
|
'b s h d -> b s (h d)')), None, None
|
||||||
|
|
||||||
|
|
||||||
|
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
||||||
|
def _prepare_decoder_attention_mask(self, attention_mask, input_shape,
|
||||||
|
inputs_embeds, past_key_values_length):
|
||||||
|
# [bsz, seq_len]
|
||||||
|
return attention_mask
|
||||||
|
|
||||||
|
|
||||||
|
def replace_llama_attn_with_flash_attn():
|
||||||
|
transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = _prepare_decoder_attention_mask
|
||||||
|
transformers.models.llama.modeling_llama.LlamaAttention = LlamaAttention
|
||||||
|
|
@ -4,6 +4,7 @@ bitsandbytes
|
||||||
datasets
|
datasets
|
||||||
sentencepiece
|
sentencepiece
|
||||||
safetensors
|
safetensors
|
||||||
|
flash-attn
|
||||||
git+https://github.com/huggingface/transformers.git
|
git+https://github.com/huggingface/transformers.git
|
||||||
git+https://github.com/sterlind/GPTQ-for-LLaMa.git@lora_4bit
|
git+https://github.com/sterlind/GPTQ-for-LLaMa.git@lora_4bit
|
||||||
git+https://github.com/sterlind/peft.git
|
git+https://github.com/sterlind/peft.git
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue