Merge branch 'main' of https://github.com/johnsmith0031/alpaca_lora_4bit
This commit is contained in:
commit
8435b2c7f2
|
|
@ -2,4 +2,6 @@ alpaca_lora/
|
|||
repository/
|
||||
__pycache__/
|
||||
llama-13b-4bit
|
||||
llama-13b-4bit.pt
|
||||
llama-13b-4bit.pt
|
||||
text-generation-webui/
|
||||
repository/
|
||||
|
|
|
|||
|
|
@ -15,7 +15,7 @@ class Finetune4bConfig:
|
|||
warmup_steps: int, save_steps: int, save_total_limit: int, logging_steps: int,
|
||||
checkpoint: bool, skip: bool, verbose: bool,
|
||||
txt_row_thd: int, use_eos_token: bool, groupsize: int,
|
||||
local_rank: int,
|
||||
local_rank: int, flash_attention: bool, backend: str
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
|
|
@ -48,6 +48,7 @@ class Finetune4bConfig:
|
|||
use_eos_token (bool): Use Eos token instead of padding with 0
|
||||
groupsize (int): Group size of V2 model, use -1 to load V1 model
|
||||
local_rank (int): local rank if using torch.distributed.launch
|
||||
flash_attention (bool): Enables flash attention
|
||||
"""
|
||||
self.dataset = dataset
|
||||
self.ds_type = ds_type
|
||||
|
|
@ -84,6 +85,8 @@ class Finetune4bConfig:
|
|||
if self.ddp:
|
||||
self.gradient_accumulation_steps = self.gradient_accumulation_steps // self.world_size
|
||||
self.groupsize = groupsize
|
||||
self.flash_attention = flash_attention
|
||||
self.backend = backend
|
||||
|
||||
|
||||
def __str__(self) -> str:
|
||||
|
|
@ -95,5 +98,6 @@ class Finetune4bConfig:
|
|||
f"{self.warmup_steps=}\n{self.save_steps=}\n{self.save_total_limit=}\n" +\
|
||||
f"{self.logging_steps=}\n" +\
|
||||
f"{self.checkpoint=}\n{self.skip=}\n" +\
|
||||
f"{self.world_size=}\n{self.ddp=}\n{self.device_map=}"
|
||||
f"{self.world_size=}\n{self.ddp=}\n{self.device_map=}\n" +\
|
||||
f"{self.groupsize=}\n{self.backend=}\n"
|
||||
return s.replace("self.", "")
|
||||
|
|
|
|||
|
|
@ -66,6 +66,12 @@ def parse_commandline():
|
|||
|
||||
# Multi GPU Support
|
||||
parser_training.add_argument("--local_rank", type=int, default=0, help="local rank if using torch.distributed.launch")
|
||||
|
||||
# Flash Attention
|
||||
parser_training.add_argument("--flash_attention", action="store_true", help="enables flash attention, can improve performance and reduce VRAM use")
|
||||
|
||||
# Train Backend
|
||||
parser_training.add_argument("--backend", type=str, default='cuda', help="Backend to use. Triton or Cuda.")
|
||||
|
||||
return vars(parser.parse_args())
|
||||
|
||||
|
|
@ -102,4 +108,6 @@ def get_config() -> Finetune4bConfig:
|
|||
use_eos_token=args["use_eos_token"]!=0,
|
||||
groupsize=args["groupsize"],
|
||||
local_rank=args["local_rank"],
|
||||
flash_attention=args["flash_attention"],
|
||||
backend=args["backend"],
|
||||
)
|
||||
|
|
|
|||
135
autograd_4bit.py
135
autograd_4bit.py
|
|
@ -3,12 +3,16 @@ import torch
|
|||
import torch.nn as nn
|
||||
import time
|
||||
import math
|
||||
from torch.cuda.amp import custom_bwd, custom_fwd
|
||||
from colorama import init, Fore, Back, Style
|
||||
init(autoreset=True)
|
||||
|
||||
|
||||
class AutogradMatmul4bit(torch.autograd.Function):
|
||||
class AutogradMatmul4bitCuda(torch.autograd.Function):
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, x, qweight, scales, zeros, groupsize=-1):
|
||||
@custom_fwd(cast_inputs=torch.float16)
|
||||
def forward(ctx, x, qweight, scales, zeros, g_idx, bits, maxq, groupsize=-1):
|
||||
ctx.save_for_backward(qweight, scales, zeros)
|
||||
ctx.groupsize = groupsize
|
||||
if groupsize == -1:
|
||||
|
|
@ -19,50 +23,117 @@ class AutogradMatmul4bit(torch.autograd.Function):
|
|||
return output
|
||||
|
||||
@staticmethod
|
||||
@custom_bwd
|
||||
def backward(ctx, grad_output):
|
||||
qweight, scales, zeros = ctx.saved_tensors
|
||||
groupsize = ctx.groupsize
|
||||
if groupsize == -1:
|
||||
grad = mm4b._matmul4bit_v1_recons(grad_output, qweight, scales, zeros, transpose=True)
|
||||
else:
|
||||
grad = mm4b._matmul4bit_v2_recons(grad_output, qweight, scales, zeros, groupsize=groupsize, transpose=True)
|
||||
return grad, None, None, None, None
|
||||
if ctx.needs_input_grad[0]:
|
||||
if groupsize == -1:
|
||||
grad = mm4b._matmul4bit_v1_recons(grad_output, qweight, scales, zeros, transpose=True)
|
||||
else:
|
||||
grad = mm4b._matmul4bit_v2_recons(grad_output, qweight, scales, zeros, groupsize=groupsize, transpose=True)
|
||||
return grad, None, None, None, None, None, None, None
|
||||
|
||||
|
||||
try:
|
||||
import triton_utils as tu
|
||||
|
||||
class AutogradMatmul4bitTriton(torch.autograd.Function):
|
||||
|
||||
@staticmethod
|
||||
@custom_fwd(cast_inputs=torch.float16)
|
||||
def forward(ctx, x, qweight, scales, qzeros, g_idx, bits, maxq, groupsize=-1):
|
||||
output = tu.triton_matmul(x, qweight, scales, qzeros, g_idx, bits, maxq)
|
||||
ctx.save_for_backward(qweight, scales, qzeros, g_idx)
|
||||
ctx.bits, ctx.maxq = bits, maxq
|
||||
output = output.clone()
|
||||
return output
|
||||
|
||||
@staticmethod
|
||||
@custom_bwd
|
||||
def backward(ctx, grad_output):
|
||||
qweight, scales, qzeros, g_idx = ctx.saved_tensors
|
||||
bits, maxq = ctx.bits, ctx.maxq
|
||||
grad_input = None
|
||||
|
||||
if ctx.needs_input_grad[0]:
|
||||
grad_input = tu.triton_matmul_transpose(grad_output, qweight, scales, qzeros, g_idx, bits, maxq)
|
||||
return grad_input, None, None, None, None, None, None, None
|
||||
|
||||
except ImportError:
|
||||
print('Triton not found. Please run "pip install triton".')
|
||||
|
||||
|
||||
AutogradMatmul4bit = AutogradMatmul4bitCuda
|
||||
backend = 'cuda'
|
||||
|
||||
|
||||
def switch_backend_to(to_backend):
|
||||
global AutogradMatmul4bit
|
||||
global backend
|
||||
if to_backend == 'cuda':
|
||||
AutogradMatmul4bit = AutogradMatmul4bitCuda
|
||||
backend = 'cuda'
|
||||
print(Style.BRIGHT + Fore.GREEN + 'Using CUDA implementation.')
|
||||
elif to_backend == 'triton':
|
||||
# detect if AutogradMatmul4bitTriton is defined
|
||||
if 'AutogradMatmul4bitTriton' not in globals():
|
||||
raise ValueError('Triton not found. Please install triton_utils.')
|
||||
AutogradMatmul4bit = AutogradMatmul4bitTriton
|
||||
backend = 'triton'
|
||||
print(Style.BRIGHT + Fore.GREEN + 'Using Triton implementation.')
|
||||
else:
|
||||
raise ValueError('Backend not supported.')
|
||||
|
||||
|
||||
def matmul4bit_with_backend(x, qweight, scales, qzeros, g_idx, bits, maxq, groupsize):
|
||||
if backend == 'cuda':
|
||||
return mm4b.matmul4bit(x, qweight, scales, qzeros, groupsize)
|
||||
elif backend == 'triton':
|
||||
assert qzeros.dtype == torch.int32
|
||||
return tu.triton_matmul(x, qweight, scales, qzeros, g_idx, bits, maxq)
|
||||
else:
|
||||
raise ValueError('Backend not supported.')
|
||||
|
||||
|
||||
# Assumes layer is perfectly divisible into 256 * 256 blocks
|
||||
class Autograd4bitQuantLinear(nn.Module):
|
||||
|
||||
def __init__(self, infeatures, outfeatures, groupsize=-1):
|
||||
def __init__(self, in_features, out_features, groupsize=-1):
|
||||
super().__init__()
|
||||
bits = 4
|
||||
self.in_features = infeatures
|
||||
self.out_features = outfeatures
|
||||
self.in_features = in_features
|
||||
self.out_features = out_features
|
||||
self.bits = bits
|
||||
self.maxq = 2 ** self.bits - 1
|
||||
self.groupsize = groupsize
|
||||
if groupsize == -1:
|
||||
self.register_buffer('zeros', torch.empty((outfeatures, 1)))
|
||||
self.register_buffer('scales', torch.empty((outfeatures, 1)))
|
||||
self.register_buffer('zeros', torch.empty((out_features, 1)))
|
||||
self.register_buffer('scales', torch.empty((out_features, 1)))
|
||||
else:
|
||||
self.register_buffer('qzeros',
|
||||
torch.empty((math.ceil(infeatures/groupsize), outfeatures // 256 * (bits * 8)), dtype=torch.int)
|
||||
torch.empty((math.ceil(in_features/groupsize), out_features // 256 * (bits * 8)), dtype=torch.int32)
|
||||
)
|
||||
self.register_buffer('scales', torch.empty((math.ceil(infeatures/groupsize), outfeatures)))
|
||||
self.register_buffer('g_idx', torch.tensor([i // self.groupsize for i in range(infeatures)], dtype = torch.int32))
|
||||
self.bias = nn.Parameter(torch.empty(outfeatures))
|
||||
self.register_buffer('scales', torch.empty((math.ceil(in_features/groupsize), out_features)))
|
||||
self.register_buffer('g_idx', torch.tensor([i // self.groupsize for i in range(in_features)], dtype = torch.int32))
|
||||
self.register_buffer('bias', torch.empty(out_features))
|
||||
self.register_buffer(
|
||||
'qweight', torch.empty((infeatures // 256 * (bits * 8), outfeatures), dtype=torch.int)
|
||||
'qweight', torch.empty((in_features // 256 * (bits * 8), out_features), dtype=torch.int32)
|
||||
)
|
||||
|
||||
|
||||
def forward(self, x):
|
||||
if torch.is_grad_enabled():
|
||||
out = AutogradMatmul4bit.apply(x, self.qweight, self.scales,
|
||||
self.qzeros if self.groupsize != -1 else self.zeros, self.groupsize)
|
||||
out.add_(self.bias)
|
||||
self.qzeros if self.groupsize != -1 else self.zeros,
|
||||
self.g_idx, self.bits, self.maxq,
|
||||
self.groupsize)
|
||||
else:
|
||||
out = mm4b.matmul4bit(x, self.qweight, self.scales,
|
||||
self.qzeros if self.groupsize != -1 else self.zeros, self.groupsize)
|
||||
out.add_(self.bias)
|
||||
out = matmul4bit_with_backend(x, self.qweight, self.scales,
|
||||
self.qzeros if self.groupsize != -1 else self.zeros,
|
||||
self.g_idx, self.bits, self.maxq,
|
||||
self.groupsize)
|
||||
out += self.bias
|
||||
return out
|
||||
|
||||
|
||||
|
|
@ -88,7 +159,7 @@ def model_to_half(model):
|
|||
m.zeros = m.zeros.half()
|
||||
m.scales = m.scales.half()
|
||||
m.bias = m.bias.half()
|
||||
print('Converted as Half.')
|
||||
print(Style.BRIGHT + Fore.YELLOW + 'Converted as Half.')
|
||||
|
||||
|
||||
def model_to_float(model):
|
||||
|
|
@ -99,7 +170,7 @@ def model_to_float(model):
|
|||
m.zeros = m.zeros.float()
|
||||
m.scales = m.scales.float()
|
||||
m.bias = m.bias.float()
|
||||
print('Converted as Float.')
|
||||
print(Style.BRIGHT + Fore.YELLOW + 'Converted as Float.')
|
||||
|
||||
|
||||
def find_layers(module, layers=[nn.Conv2d, nn.Linear], name=''):
|
||||
|
|
@ -117,7 +188,7 @@ def load_llama_model_4bit_low_ram(config_path, model_path, groupsize=-1, half=Fa
|
|||
import accelerate
|
||||
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
|
||||
|
||||
print("Loading Model ...")
|
||||
print(Style.BRIGHT + Fore.CYAN + "Loading Model ...")
|
||||
t0 = time.time()
|
||||
|
||||
with accelerate.init_empty_weights():
|
||||
|
|
@ -144,18 +215,18 @@ def load_llama_model_4bit_low_ram(config_path, model_path, groupsize=-1, half=Fa
|
|||
tokenizer = LlamaTokenizer.from_pretrained(config_path)
|
||||
tokenizer.truncation_side = 'left'
|
||||
|
||||
print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
|
||||
print(Style.BRIGHT + Fore.GREEN + f"Loaded the model in {(time.time()-t0):.2f} seconds.")
|
||||
|
||||
return model, tokenizer
|
||||
|
||||
def load_llama_model_4bit_low_ram_and_offload_to_cpu(config_path, model_path, lora_path=None, groupsize=-1, seqlen=2048, max_memory=None):
|
||||
def load_llama_model_4bit_low_ram_and_offload(config_path, model_path, lora_path=None, groupsize=-1, seqlen=2048, max_memory=None):
|
||||
import accelerate
|
||||
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
|
||||
|
||||
if max_memory is None:
|
||||
max_memory = {0: '24Gib', 'cpu': '48Gib'}
|
||||
|
||||
print("Loading Model ...")
|
||||
print(Style.BRIGHT + Fore.CYAN + "Loading Model ...")
|
||||
t0 = time.time()
|
||||
|
||||
with accelerate.init_empty_weights():
|
||||
|
|
@ -180,7 +251,7 @@ def load_llama_model_4bit_low_ram_and_offload_to_cpu(config_path, model_path, lo
|
|||
from peft import PeftModel
|
||||
from peft.tuners.lora import Linear4bitLt
|
||||
model = PeftModel.from_pretrained(model, lora_path, device_map={'': 'cpu'}, torch_dtype=torch.float32)
|
||||
print('{} Lora Applied.'.format(lora_path))
|
||||
print(Style.BRIGHT + Fore.GREEN + '{} Lora Applied.'.format(lora_path))
|
||||
|
||||
model.seqlen = seqlen
|
||||
|
||||
|
|
@ -196,7 +267,7 @@ def load_llama_model_4bit_low_ram_and_offload_to_cpu(config_path, model_path, lo
|
|||
device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LlamaDecoderLayer"])
|
||||
model = accelerate.dispatch_model(model, device_map=device_map, offload_buffers=True, main_device=0)
|
||||
torch.cuda.empty_cache()
|
||||
print('Total {:.2f} Gib VRAM used.'.format(torch.cuda.memory_allocated() / 1024 / 1024))
|
||||
print(Style.BRIGHT + Fore.YELLOW + 'Total {:.2f} Gib VRAM used.'.format(torch.cuda.memory_allocated() / 1024 / 1024))
|
||||
|
||||
# rotary_emb fix
|
||||
for n, m in model.named_modules():
|
||||
|
|
@ -215,6 +286,8 @@ def load_llama_model_4bit_low_ram_and_offload_to_cpu(config_path, model_path, lo
|
|||
tokenizer = LlamaTokenizer.from_pretrained(config_path)
|
||||
tokenizer.truncation_side = 'left'
|
||||
|
||||
print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
|
||||
print(Style.BRIGHT + Fore.GREEN + f"Loaded the model in {(time.time()-t0):.2f} seconds.")
|
||||
|
||||
return model, tokenizer
|
||||
|
||||
load_llama_model_4bit_low_ram_and_offload_to_cpu = load_llama_model_4bit_low_ram_and_offload
|
||||
|
|
|
|||
|
|
@ -0,0 +1,167 @@
|
|||
#https://github.com/fpgaminer/GPTQ-triton
|
||||
"""
|
||||
Mostly the same as the autotuner in Triton, but with a few changes like using 40 runs instead of 100.
|
||||
"""
|
||||
|
||||
import builtins
|
||||
import math
|
||||
import time
|
||||
from typing import Dict
|
||||
|
||||
import triton
|
||||
|
||||
|
||||
class Autotuner(triton.KernelInterface):
|
||||
def __init__(self, fn, arg_names, configs, key, reset_to_zero, prune_configs_by: Dict = None, nearest_power_of_two: bool = False):
|
||||
'''
|
||||
:param prune_configs_by: a dict of functions that are used to prune configs, fields:
|
||||
'perf_model': performance model used to predicate running time with different configs, returns running time
|
||||
'top_k': number of configs to bench
|
||||
'prune_num_stages_by'(optional): a function used to prune num_stages. It take configs:List[Config] as its input, and returns pruned configs.
|
||||
'nearest_power_of_two'(optional): whether to round key arguments to the nearest power of two when caching tuning results
|
||||
'''
|
||||
if not configs:
|
||||
self.configs = [triton.Config({}, num_warps=4, num_stages=2)]
|
||||
else:
|
||||
self.configs = configs
|
||||
self.key_idx = [arg_names.index(k) for k in key]
|
||||
self.nearest_power_of_two = nearest_power_of_two
|
||||
self.cache = {}
|
||||
# hook to reset all required tensor to zeros before relaunching a kernel
|
||||
self.hook = lambda args: 0
|
||||
if reset_to_zero is not None:
|
||||
self.reset_idx = [arg_names.index(k) for k in reset_to_zero]
|
||||
|
||||
def _hook(args):
|
||||
for i in self.reset_idx:
|
||||
args[i].zero_()
|
||||
self.hook = _hook
|
||||
self.arg_names = arg_names
|
||||
# prune configs
|
||||
if prune_configs_by:
|
||||
perf_model, top_k = prune_configs_by['perf_model'], prune_configs_by['top_k']
|
||||
if 'early_config_prune' in prune_configs_by:
|
||||
early_config_prune = prune_configs_by['early_config_prune']
|
||||
else:
|
||||
perf_model, top_k, early_config_prune = None, None, None
|
||||
self.perf_model, self.configs_top_k = perf_model, top_k
|
||||
self.early_config_prune = early_config_prune
|
||||
self.fn = fn
|
||||
|
||||
def _bench(self, *args, config, **meta):
|
||||
# check for conflicts, i.e. meta-parameters both provided
|
||||
# as kwargs and by the autotuner
|
||||
conflicts = meta.keys() & config.kwargs.keys()
|
||||
if conflicts:
|
||||
raise ValueError(
|
||||
f"Conflicting meta-parameters: {', '.join(conflicts)}."
|
||||
" Make sure that you don't re-define auto-tuned symbols."
|
||||
)
|
||||
# augment meta-parameters with tunable ones
|
||||
current = dict(meta, **config.kwargs)
|
||||
|
||||
def kernel_call():
|
||||
if config.pre_hook:
|
||||
config.pre_hook(self.nargs)
|
||||
self.hook(args)
|
||||
self.fn.run(*args, num_warps=config.num_warps, num_stages=config.num_stages, **current)
|
||||
try:
|
||||
# In testings using only 40 reps seems to be close enough and it appears to be what PyTorch uses
|
||||
# PyTorch also sets fast_flush to True, but I didn't see any speedup so I'll leave the default
|
||||
return triton.testing.do_bench(kernel_call, rep=40)
|
||||
except triton.compiler.OutOfResources:
|
||||
return float('inf')
|
||||
|
||||
def run(self, *args, **kwargs):
|
||||
self.nargs = dict(zip(self.arg_names, args))
|
||||
if len(self.configs) > 1:
|
||||
key = tuple(args[i] for i in self.key_idx)
|
||||
|
||||
# This reduces the amount of autotuning by rounding the keys to the nearest power of two
|
||||
# In my testing this gives decent results, and greatly reduces the amount of tuning required
|
||||
if self.nearest_power_of_two:
|
||||
key = tuple([2 ** int(math.log2(x) + 0.5) for x in key])
|
||||
|
||||
if key not in self.cache:
|
||||
# prune configs
|
||||
pruned_configs = self.prune_configs(kwargs)
|
||||
bench_start = time.time()
|
||||
timings = {config: self._bench(*args, config=config, **kwargs)
|
||||
for config in pruned_configs}
|
||||
bench_end = time.time()
|
||||
self.bench_time = bench_end - bench_start
|
||||
self.cache[key] = builtins.min(timings, key=timings.get)
|
||||
self.hook(args)
|
||||
self.configs_timings = timings
|
||||
config = self.cache[key]
|
||||
else:
|
||||
config = self.configs[0]
|
||||
self.best_config = config
|
||||
if config.pre_hook is not None:
|
||||
config.pre_hook(self.nargs)
|
||||
return self.fn.run(*args, num_warps=config.num_warps, num_stages=config.num_stages, **kwargs, **config.kwargs)
|
||||
|
||||
def prune_configs(self, kwargs):
|
||||
pruned_configs = self.configs
|
||||
if self.early_config_prune:
|
||||
pruned_configs = self.early_config_prune(self.configs, self.nargs)
|
||||
if self.perf_model:
|
||||
top_k = self.configs_top_k
|
||||
if isinstance(top_k, float) and top_k <= 1.0:
|
||||
top_k = int(len(self.configs) * top_k)
|
||||
if len(pruned_configs) > top_k:
|
||||
est_timing = {
|
||||
config: self.perf_model(**self.nargs, **kwargs, **config.kwargs, num_stages=config.num_stages,
|
||||
num_warps=config.num_warps)
|
||||
for config in pruned_configs
|
||||
}
|
||||
pruned_configs = sorted(est_timing.keys(), key=lambda x: est_timing[x])[:top_k]
|
||||
return pruned_configs
|
||||
|
||||
def warmup(self, *args, **kwargs):
|
||||
self.nargs = dict(zip(self.arg_names, args))
|
||||
for config in self.prune_configs(kwargs):
|
||||
self.fn.warmup(
|
||||
*args,
|
||||
num_warps=config.num_warps,
|
||||
num_stages=config.num_stages,
|
||||
**kwargs,
|
||||
**config.kwargs,
|
||||
)
|
||||
self.nargs = None
|
||||
|
||||
|
||||
def autotune(configs, key, prune_configs_by=None, reset_to_zero=None, nearest_power_of_two=False):
|
||||
"""
|
||||
Decorator for auto-tuning a :code:`triton.jit`'d function.
|
||||
.. highlight:: python
|
||||
.. code-block:: python
|
||||
@triton.autotune(configs=[
|
||||
triton.Config(meta={'BLOCK_SIZE': 128}, num_warps=4),
|
||||
triton.Config(meta={'BLOCK_SIZE': 1024}, num_warps=8),
|
||||
],
|
||||
key=['x_size'] # the two above configs will be evaluated anytime
|
||||
# the value of x_size changes
|
||||
)
|
||||
@triton.jit
|
||||
def kernel(x_ptr, x_size, **META):
|
||||
BLOCK_SIZE = META['BLOCK_SIZE']
|
||||
:note: When all the configurations are evaluated, the kernel will run multiple time.
|
||||
This means that whatever value the kernel updates will be updated multiple times.
|
||||
To avoid this undesired behavior, you can use the `reset_to_zero` argument, which
|
||||
reset the value of the provided tensor to `zero` before running any configuration.
|
||||
:param configs: a list of :code:`triton.Config` objects
|
||||
:type configs: list[triton.Config]
|
||||
:param key: a list of argument names whose change in value will trigger the evaluation of all provided configs.
|
||||
:type key: list[str]
|
||||
:param prune_configs_by: a dict of functions that are used to prune configs, fields:
|
||||
'perf_model': performance model used to predicate running time with different configs, returns running time
|
||||
'top_k': number of configs to bench
|
||||
'early_config_prune'(optional): a function used to do early prune (eg, num_stages). It take configs:List[Config] as its input, and returns pruned configs.
|
||||
:param reset_to_zero: a list of argument names whose value will be reset to zero before evaluating any configs.
|
||||
:type reset_to_zero: list[str]
|
||||
"""
|
||||
def decorator(fn):
|
||||
return Autotuner(fn, fn.arg_names, configs, key, reset_to_zero, prune_configs_by, nearest_power_of_two)
|
||||
|
||||
return decorator
|
||||
27
finetune.py
27
finetune.py
|
|
@ -16,6 +16,19 @@
|
|||
}
|
||||
]
|
||||
"""
|
||||
# Early load config to replace attn if needed
|
||||
from arg_parser import get_config
|
||||
ft_config = get_config()
|
||||
|
||||
if ft_config.flash_attention:
|
||||
from monkeypatch.llama_flash_attn_monkey_patch import replace_llama_attn_with_flash_attn
|
||||
replace_llama_attn_with_flash_attn()
|
||||
|
||||
import autograd_4bit
|
||||
if ft_config.backend.lower() == 'triton':
|
||||
autograd_4bit.switch_backend_to('triton')
|
||||
else:
|
||||
autograd_4bit.switch_backend_to('cuda')
|
||||
|
||||
import sys
|
||||
|
||||
|
|
@ -29,10 +42,9 @@ from autograd_4bit import load_llama_model_4bit_low_ram
|
|||
from peft import LoraConfig, get_peft_model, get_peft_model_state_dict, PeftModel
|
||||
|
||||
# ! Config
|
||||
from arg_parser import get_config
|
||||
import train_data
|
||||
|
||||
ft_config = get_config()
|
||||
|
||||
|
||||
# * Show loaded parameters
|
||||
if ft_config.local_rank == 0:
|
||||
|
|
@ -59,10 +71,16 @@ lora_config = LoraConfig(
|
|||
if ft_config.lora_apply_dir is None:
|
||||
model = get_peft_model(model, lora_config)
|
||||
else:
|
||||
device_map = ft_config.device_map
|
||||
if ft_config.ddp:
|
||||
model = PeftModel.from_pretrained(model, ft_config.lora_apply_dir, device_map="auto", torch_dtype=torch.float32) # ! Direct copy from inference.py
|
||||
device_map = {'': 0}
|
||||
else:
|
||||
model = PeftModel.from_pretrained(model, ft_config.lora_apply_dir, device_map={'': 0}, torch_dtype=torch.float32)
|
||||
if torch.cuda.device_count() > 1:
|
||||
device_map = "auto"
|
||||
else:
|
||||
device_map = {'': 0}
|
||||
print('Device map for lora:', device_map)
|
||||
model = PeftModel.from_pretrained(model, ft_config.lora_apply_dir, device_map=device_map, torch_dtype=torch.float32)
|
||||
print(ft_config.lora_apply_dir, 'loaded')
|
||||
|
||||
|
||||
|
|
@ -109,6 +127,7 @@ if not ft_config.skip:
|
|||
per_device_train_batch_size=ft_config.mbatch_size,
|
||||
gradient_accumulation_steps=ft_config.gradient_accumulation_steps,
|
||||
warmup_steps=ft_config.warmup_steps,
|
||||
optim="adamw_torch",
|
||||
num_train_epochs=ft_config.epochs,
|
||||
learning_rate=ft_config.lr,
|
||||
fp16=True,
|
||||
|
|
|
|||
|
|
@ -0,0 +1,144 @@
|
|||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
import transformers
|
||||
from transformers.models.llama.modeling_llama import LlamaConfig, LlamaRotaryEmbedding, apply_rotary_pos_emb
|
||||
|
||||
from einops import rearrange
|
||||
|
||||
from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func
|
||||
from flash_attn.bert_padding import unpad_input, pad_input
|
||||
|
||||
class LlamaAttention(nn.Module):
|
||||
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: LlamaConfig,
|
||||
):
|
||||
super().__init__()
|
||||
hidden_size = config.hidden_size
|
||||
num_heads = config.num_attention_heads
|
||||
self.hidden_size = hidden_size
|
||||
self.num_heads = num_heads
|
||||
self.head_dim = self.hidden_size // num_heads
|
||||
|
||||
if (self.head_dim * num_heads) != self.hidden_size:
|
||||
raise ValueError(
|
||||
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
||||
f" and `num_heads`: {num_heads}).")
|
||||
self.q_proj = nn.Linear(
|
||||
hidden_size,
|
||||
num_heads * self.head_dim,
|
||||
bias=False,
|
||||
)
|
||||
self.k_proj = nn.Linear(
|
||||
hidden_size,
|
||||
num_heads * self.head_dim,
|
||||
bias=False,
|
||||
)
|
||||
self.v_proj = nn.Linear(
|
||||
hidden_size,
|
||||
num_heads * self.head_dim,
|
||||
bias=False,
|
||||
)
|
||||
self.o_proj = nn.Linear(
|
||||
num_heads * self.head_dim,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
)
|
||||
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim)
|
||||
|
||||
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
||||
return tensor.view(bsz, seq_len, self.num_heads,
|
||||
self.head_dim).transpose(1, 2).contiguous()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
|
||||
Optional[Tuple[torch.Tensor]]]:
|
||||
"""Input shape: Batch x Time x Channel
|
||||
|
||||
attention_mask: [bsz, q_len]
|
||||
"""
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
query_states = self.q_proj(hidden_states).view(
|
||||
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
key_states = self.k_proj(hidden_states).view(
|
||||
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
value_states = self.v_proj(hidden_states).view(
|
||||
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
# [bsz, q_len, nh, hd]
|
||||
# [bsz, nh, q_len, hd]
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
if past_key_value is not None:
|
||||
kv_seq_len += past_key_value[0].shape[-2]
|
||||
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states,
|
||||
key_states,
|
||||
cos,
|
||||
sin,
|
||||
position_ids)
|
||||
# [bsz, nh, t, hd]
|
||||
assert not output_attentions, "output_attentions is not supported"
|
||||
assert not use_cache, "use_cache is not supported"
|
||||
assert past_key_value is None, "past_key_value is not supported"
|
||||
|
||||
# Flash attention codes from
|
||||
# https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/flash_attention.py
|
||||
|
||||
# transform the data into the format required by flash attention
|
||||
qkv = torch.stack([query_states, key_states, value_states], dim=2) # [bsz, nh, 3, q_len, hd]
|
||||
qkv = qkv.transpose(1, 3) # [bsz, q_len, 3, nh, hd]
|
||||
# We have disabled _prepare_decoder_attention_mask in LlamaModel
|
||||
# the attention_mask should be the same as the key_padding_mask
|
||||
key_padding_mask = attention_mask
|
||||
|
||||
|
||||
if key_padding_mask is None:
|
||||
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
|
||||
max_s = q_len
|
||||
cu_q_lens = torch.arange(0, (bsz + 1) * q_len, step=q_len, dtype=torch.int32,
|
||||
device=qkv.device)
|
||||
output = flash_attn_unpadded_qkvpacked_func(
|
||||
qkv, cu_q_lens, max_s, 0.0,
|
||||
softmax_scale=None, causal=True
|
||||
)
|
||||
output = rearrange(output, '(b s) ... -> b s ...', b=bsz)
|
||||
else:
|
||||
nheads = qkv.shape[-2]
|
||||
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
|
||||
x_unpad, indices, cu_q_lens, max_s = unpad_input(x, key_padding_mask)
|
||||
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
|
||||
output_unpad = flash_attn_unpadded_qkvpacked_func(
|
||||
x_unpad, cu_q_lens, max_s, 0.0,
|
||||
softmax_scale=None, causal=True
|
||||
)
|
||||
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
|
||||
indices, bsz, q_len),
|
||||
'b s (h d) -> b s h d', h=nheads)
|
||||
return self.o_proj(rearrange(output,
|
||||
'b s h d -> b s (h d)')), None, None
|
||||
|
||||
|
||||
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
||||
def _prepare_decoder_attention_mask(self, attention_mask, input_shape,
|
||||
inputs_embeds, past_key_values_length):
|
||||
# [bsz, seq_len]
|
||||
return attention_mask
|
||||
|
||||
|
||||
def replace_llama_attn_with_flash_attn():
|
||||
transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = _prepare_decoder_attention_mask
|
||||
transformers.models.llama.modeling_llama.LlamaAttention = LlamaAttention
|
||||
|
|
@ -6,6 +6,9 @@ sentencepiece
|
|||
safetensors==0.3.0
|
||||
gradio
|
||||
semantic-version==2.10.0
|
||||
flash-attn
|
||||
triton
|
||||
colorama
|
||||
git+https://github.com/huggingface/transformers.git
|
||||
git+https://github.com/sterlind/GPTQ-for-LLaMa.git@lora_4bit
|
||||
git+https://github.com/sterlind/peft.git
|
||||
|
|
|
|||
|
|
@ -5,6 +5,8 @@ from autograd_4bit import load_llama_model_4bit_low_ram, Autograd4bitQuantLinear
|
|||
from peft import PeftModel
|
||||
from peft.tuners.lora import Linear4bitLt
|
||||
|
||||
patch_encode_func = False
|
||||
|
||||
def load_model_llama(*args, **kwargs):
|
||||
|
||||
config_path = '../llama-7b-4bit/'
|
||||
|
|
@ -43,4 +45,15 @@ shared.settings['name2'] = 'Assistant'
|
|||
shared.settings['chat_prompt_size_max'] = 2048
|
||||
shared.settings['chat_prompt_size'] = 2048
|
||||
|
||||
if patch_encode_func:
|
||||
from modules import text_generation
|
||||
text_generation.encode_old = text_generation.encode
|
||||
def encode_patched(*args, **kwargs):
|
||||
input_ids = text_generation.encode_old(*args, **kwargs)
|
||||
if input_ids[0,0] == 0:
|
||||
input_ids = input_ids[:, 1:]
|
||||
return input_ids
|
||||
text_generation.encode = encode_patched
|
||||
print('Encode Function Patched.')
|
||||
|
||||
print('Monkey Patch Completed.')
|
||||
|
|
|
|||
451
triton_utils.py
451
triton_utils.py
|
|
@ -1,205 +1,246 @@
|
|||
import triton
|
||||
import triton.language as tl
|
||||
import torch
|
||||
|
||||
# code based https://github.com/fpgaminer/GPTQ-triton
|
||||
@triton.autotune(
|
||||
configs=[
|
||||
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8),
|
||||
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8),
|
||||
triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8),
|
||||
triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2),
|
||||
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2),
|
||||
],
|
||||
key=['M', 'N', 'K'],
|
||||
)
|
||||
|
||||
@triton.jit
|
||||
def matmul_248_kernel(a_ptr, b_ptr, c_ptr,
|
||||
scales_ptr, zeros_ptr, g_ptr,
|
||||
M, N, K, bits, maxq,
|
||||
stride_am, stride_ak,
|
||||
stride_bk, stride_bn,
|
||||
stride_cm, stride_cn,
|
||||
stride_scales, stride_zeros,
|
||||
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
|
||||
GROUP_SIZE_M: tl.constexpr):
|
||||
"""
|
||||
Compute the matrix multiplication C = A x B.
|
||||
A is of shape (M, K) float16
|
||||
B is of shape (K//8, N) int32
|
||||
C is of shape (M, N) float16
|
||||
scales is of shape (G, N) float16
|
||||
zeros is of shape (G, N) float16
|
||||
g_ptr is of shape (K) int32
|
||||
"""
|
||||
infearure_per_bits = 32 // bits
|
||||
|
||||
pid = tl.program_id(axis=0)
|
||||
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
|
||||
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
|
||||
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
|
||||
num_pid_in_group = GROUP_SIZE_M * num_pid_n
|
||||
group_id = pid // num_pid_in_group
|
||||
first_pid_m = group_id * GROUP_SIZE_M
|
||||
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
|
||||
pid_m = first_pid_m + (pid % group_size_m)
|
||||
pid_n = (pid % num_pid_in_group) // group_size_m
|
||||
|
||||
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
||||
offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
||||
offs_k = tl.arange(0, BLOCK_SIZE_K)
|
||||
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
|
||||
a_mask = (offs_am[:, None] < M)
|
||||
# b_ptrs is set up such that it repeats elements along the K axis 8 times
|
||||
b_ptrs = b_ptr + ((offs_k[:, None] // infearure_per_bits) * stride_bk + offs_bn[None, :] * stride_bn) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
|
||||
g_ptrs = g_ptr + offs_k
|
||||
# shifter is used to extract the N bits of each element in the 32-bit word from B
|
||||
scales_ptrs = scales_ptr + offs_bn[None, :]
|
||||
zeros_ptrs = zeros_ptr + (offs_bn[None, :]// infearure_per_bits)
|
||||
|
||||
shifter = (offs_k % infearure_per_bits) * bits
|
||||
zeros_shifter = (offs_bn % infearure_per_bits) * bits
|
||||
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
|
||||
|
||||
for k in range(0, num_pid_k):
|
||||
g_idx = tl.load(g_ptrs)
|
||||
|
||||
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
|
||||
scales = tl.load(scales_ptrs + g_idx[:, None] * stride_scales) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
zeros = tl.load(zeros_ptrs + g_idx[:, None] * stride_zeros) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
|
||||
zeros = (zeros >> zeros_shifter[None, :]) & maxq
|
||||
zeros = (zeros + 1)
|
||||
|
||||
a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
|
||||
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
|
||||
|
||||
# Now we need to unpack b (which is N-bit values) into 32-bit values
|
||||
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
|
||||
b = (b - zeros) * scales # Scale and shift
|
||||
|
||||
accumulator += tl.dot(a, b)
|
||||
a_ptrs += BLOCK_SIZE_K
|
||||
b_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk
|
||||
g_ptrs += BLOCK_SIZE_K
|
||||
|
||||
c = accumulator.to(tl.float16)
|
||||
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :]
|
||||
c_mask = (offs_am[:, None] < M) & (offs_bn[None, :] < N)
|
||||
tl.store(c_ptrs, accumulator, mask=c_mask)
|
||||
|
||||
# code based https://github.com/fpgaminer/GPTQ-triton
|
||||
@triton.autotune(
|
||||
configs=[
|
||||
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8),
|
||||
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 256, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8),
|
||||
triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8),
|
||||
triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 256, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2),
|
||||
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2),
|
||||
],
|
||||
key=['M', 'N', 'K'],
|
||||
)
|
||||
|
||||
@triton.jit
|
||||
def trans_matmul_248_kernel(a_ptr, b_ptr, c_ptr,
|
||||
scales_ptr, zeros_ptr, g_ptr,
|
||||
M, N, K, bits, maxq,
|
||||
stride_am, stride_ak,
|
||||
stride_bk, stride_bn,
|
||||
stride_cm, stride_cn,
|
||||
stride_scales, stride_zeros,
|
||||
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
|
||||
GROUP_SIZE_M: tl.constexpr):
|
||||
"""
|
||||
Compute the matrix multiplication C = A x B.
|
||||
A is of shape (M, N) float16
|
||||
B is of shape (K//8, N) int32
|
||||
C is of shape (M, K) float16
|
||||
scales is of shape (G, N) float16
|
||||
zeros is of shape (G, N) float16
|
||||
g_ptr is of shape (K) int32
|
||||
"""
|
||||
infearure_per_bits = 32 // bits
|
||||
|
||||
pid = tl.program_id(axis=0)
|
||||
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
|
||||
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
|
||||
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
|
||||
num_pid_in_group = GROUP_SIZE_M * num_pid_k
|
||||
group_id = pid // num_pid_in_group
|
||||
first_pid_m = group_id * GROUP_SIZE_M
|
||||
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
|
||||
pid_m = first_pid_m + (pid % group_size_m)
|
||||
pid_k = (pid % num_pid_in_group) // group_size_m
|
||||
|
||||
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
||||
offs_bk = pid_k * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K)
|
||||
offs_n = tl.arange(0, BLOCK_SIZE_N)
|
||||
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_n[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_N)
|
||||
a_mask = (offs_am[:, None] < M)
|
||||
# b_ptrs is set up such that it repeats elements along the K axis 8 times
|
||||
b_ptrs = b_ptr + ((offs_bk[:, None] // infearure_per_bits) * stride_bk + offs_n[None, :] * stride_bn) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
|
||||
g_ptrs = g_ptr + offs_bk
|
||||
g_idx = tl.load(g_ptrs)
|
||||
|
||||
# shifter is used to extract the N bits of each element in the 32-bit word from B
|
||||
scales_ptrs = scales_ptr + offs_n[None, :] + g_idx[:, None] * stride_scales
|
||||
zeros_ptrs = zeros_ptr + (offs_n[None, :]// infearure_per_bits) + g_idx[:, None] * stride_zeros
|
||||
|
||||
shifter = (offs_bk % infearure_per_bits) * bits
|
||||
zeros_shifter = (offs_n % infearure_per_bits) * bits
|
||||
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_K), dtype=tl.float32)
|
||||
|
||||
for k in range(0, num_pid_n):
|
||||
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
|
||||
scales = tl.load(scales_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
zeros = tl.load(zeros_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
|
||||
zeros = (zeros >> zeros_shifter[None, :]) & maxq
|
||||
zeros = (zeros + 1)
|
||||
|
||||
a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_N)
|
||||
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
|
||||
|
||||
# Now we need to unpack b (which is N-bit values) into 32-bit values
|
||||
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
|
||||
b = (b - zeros) * scales # Scale and shift
|
||||
b = tl.trans(b)
|
||||
|
||||
accumulator += tl.dot(a, b)
|
||||
a_ptrs += BLOCK_SIZE_N
|
||||
b_ptrs += BLOCK_SIZE_N
|
||||
scales_ptrs += BLOCK_SIZE_N
|
||||
zeros_ptrs += (BLOCK_SIZE_N // infearure_per_bits)
|
||||
|
||||
c = accumulator.to(tl.float16)
|
||||
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bk[None, :]
|
||||
c_mask = (offs_am[:, None] < M) & (offs_bk[None, :] < K)
|
||||
tl.store(c_ptrs, accumulator, mask=c_mask)
|
||||
|
||||
|
||||
def triton_matmul(input, qweight, scales, qzeros, g_idx, bits, maxq):
|
||||
output = torch.empty((input.shape[0], qweight.shape[1]), device='cuda', dtype=torch.float16)
|
||||
grid = lambda META: (triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(qweight.shape[1], META['BLOCK_SIZE_N']),)
|
||||
matmul_248_kernel[grid](input, qweight, output,
|
||||
scales, qzeros, g_idx,
|
||||
input.shape[0], qweight.shape[1], input.shape[1], bits, maxq,
|
||||
input.stride(0), input.stride(1),
|
||||
qweight.stride(0), qweight.stride(1),
|
||||
output.stride(0), output.stride(1),
|
||||
scales.stride(0), qzeros.stride(0))
|
||||
return output
|
||||
|
||||
import triton
|
||||
import triton.language as tl
|
||||
import torch
|
||||
import custom_autotune
|
||||
|
||||
|
||||
# code based https://github.com/fpgaminer/GPTQ-triton
|
||||
@custom_autotune.autotune(
|
||||
configs=[
|
||||
triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
# These provided a benefit on a 3090
|
||||
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
],
|
||||
key=['M', 'N'],
|
||||
nearest_power_of_two=True,
|
||||
)
|
||||
|
||||
|
||||
@triton.jit
|
||||
def matmul_248_kernel(a_ptr, b_ptr, c_ptr,
|
||||
scales_ptr, zeros_ptr, g_ptr,
|
||||
M, N, K, bits, maxq,
|
||||
stride_am, stride_ak,
|
||||
stride_bk, stride_bn,
|
||||
stride_cm, stride_cn,
|
||||
stride_scales, stride_zeros,
|
||||
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
|
||||
GROUP_SIZE_M: tl.constexpr):
|
||||
"""
|
||||
Compute the matrix multiplication C = A x B.
|
||||
A is of shape (M, K) float16
|
||||
B is of shape (K//8, N) int32
|
||||
C is of shape (M, N) float16
|
||||
scales is of shape (G, N) float16
|
||||
zeros is of shape (G, N) float16
|
||||
g_ptr is of shape (K) int32
|
||||
"""
|
||||
infearure_per_bits = 32 // bits
|
||||
|
||||
pid = tl.program_id(axis=0)
|
||||
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
|
||||
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
|
||||
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
|
||||
num_pid_in_group = GROUP_SIZE_M * num_pid_n
|
||||
group_id = pid // num_pid_in_group
|
||||
first_pid_m = group_id * GROUP_SIZE_M
|
||||
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
|
||||
pid_m = first_pid_m + (pid % group_size_m)
|
||||
pid_n = (pid % num_pid_in_group) // group_size_m
|
||||
|
||||
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
||||
offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
||||
offs_k = tl.arange(0, BLOCK_SIZE_K)
|
||||
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
|
||||
a_mask = (offs_am[:, None] < M)
|
||||
# b_ptrs is set up such that it repeats elements along the K axis 8 times
|
||||
b_ptrs = b_ptr + ((offs_k[:, None] // infearure_per_bits) * stride_bk + offs_bn[None, :] * stride_bn) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
|
||||
g_ptrs = g_ptr + offs_k
|
||||
# shifter is used to extract the N bits of each element in the 32-bit word from B
|
||||
scales_ptrs = scales_ptr + offs_bn[None, :]
|
||||
zeros_ptrs = zeros_ptr + (offs_bn[None, :] // infearure_per_bits)
|
||||
|
||||
shifter = (offs_k % infearure_per_bits) * bits
|
||||
zeros_shifter = (offs_bn % infearure_per_bits) * bits
|
||||
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
|
||||
|
||||
for k in range(0, num_pid_k):
|
||||
g_idx = tl.load(g_ptrs)
|
||||
|
||||
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
|
||||
scales = tl.load(scales_ptrs + g_idx[:, None] * stride_scales) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
zeros = tl.load(zeros_ptrs + g_idx[:, None] * stride_zeros) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
|
||||
zeros = (zeros >> zeros_shifter[None, :]) & maxq
|
||||
zeros = (zeros + 1)
|
||||
|
||||
a = tl.load(a_ptrs, mask=a_mask, other=0.0) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
|
||||
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
|
||||
|
||||
# Now we need to unpack b (which is N-bit values) into 32-bit values
|
||||
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
|
||||
b = (b - zeros) * scales # Scale and shift
|
||||
# ! Convert to fp16
|
||||
b = b.to(tl.float16)
|
||||
a = a.to(tl.float16)
|
||||
|
||||
accumulator += tl.dot(a, b)
|
||||
a_ptrs += BLOCK_SIZE_K
|
||||
b_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk
|
||||
g_ptrs += BLOCK_SIZE_K
|
||||
|
||||
c = accumulator.to(tl.float16)
|
||||
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :]
|
||||
c_mask = (offs_am[:, None] < M) & (offs_bn[None, :] < N)
|
||||
tl.store(c_ptrs, c, mask=c_mask)
|
||||
|
||||
|
||||
# code based https://github.com/fpgaminer/GPTQ-triton
|
||||
@custom_autotune.autotune(
|
||||
configs=[
|
||||
triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_K': 256, 'BLOCK_SIZE_N': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_N': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_N': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_K': 32, 'BLOCK_SIZE_N': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
# These provided a benefit on a 3090
|
||||
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_K': 32, 'BLOCK_SIZE_N': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 64, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 64, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_K': 32, 'BLOCK_SIZE_N': 64, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_N': 128, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
|
||||
],
|
||||
key=['M', 'K'],
|
||||
nearest_power_of_two=True,
|
||||
)
|
||||
|
||||
|
||||
@triton.jit
|
||||
def trans_matmul_248_kernel(a_ptr, b_ptr, c_ptr,
|
||||
scales_ptr, zeros_ptr, g_ptr,
|
||||
M, N, K, bits, maxq,
|
||||
stride_am, stride_ak,
|
||||
stride_bk, stride_bn,
|
||||
stride_cm, stride_cn,
|
||||
stride_scales, stride_zeros,
|
||||
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
|
||||
GROUP_SIZE_M: tl.constexpr):
|
||||
"""
|
||||
Compute the matrix multiplication C = A x B.
|
||||
A is of shape (M, N) float16
|
||||
B is of shape (K//8, N) int32
|
||||
C is of shape (M, K) float16
|
||||
scales is of shape (G, N) float16
|
||||
zeros is of shape (G, N) float16
|
||||
g_ptr is of shape (K) int32
|
||||
"""
|
||||
infearure_per_bits = 32 // bits
|
||||
|
||||
pid = tl.program_id(axis=0)
|
||||
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
|
||||
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
|
||||
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
|
||||
num_pid_in_group = GROUP_SIZE_M * num_pid_k
|
||||
group_id = pid // num_pid_in_group
|
||||
first_pid_m = group_id * GROUP_SIZE_M
|
||||
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
|
||||
pid_m = first_pid_m + (pid % group_size_m)
|
||||
pid_k = (pid % num_pid_in_group) // group_size_m
|
||||
|
||||
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
||||
offs_bk = pid_k * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K)
|
||||
offs_n = tl.arange(0, BLOCK_SIZE_N)
|
||||
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_n[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_N)
|
||||
a_mask = (offs_am[:, None] < M)
|
||||
# b_ptrs is set up such that it repeats elements along the K axis 8 times
|
||||
b_ptrs = b_ptr + ((offs_bk[:, None] // infearure_per_bits) * stride_bk + offs_n[None, :] * stride_bn) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
|
||||
g_ptrs = g_ptr + offs_bk
|
||||
g_idx = tl.load(g_ptrs)
|
||||
|
||||
# shifter is used to extract the N bits of each element in the 32-bit word from B
|
||||
scales_ptrs = scales_ptr + offs_n[None, :] + g_idx[:, None] * stride_scales
|
||||
zeros_ptrs = zeros_ptr + (offs_n[None, :] // infearure_per_bits) + g_idx[:, None] * stride_zeros
|
||||
|
||||
shifter = (offs_bk % infearure_per_bits) * bits
|
||||
zeros_shifter = (offs_n % infearure_per_bits) * bits
|
||||
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_K), dtype=tl.float32)
|
||||
|
||||
for k in range(0, num_pid_n):
|
||||
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
|
||||
scales = tl.load(scales_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
zeros = tl.load(zeros_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
|
||||
zeros = (zeros >> zeros_shifter[None, :]) & maxq
|
||||
zeros = (zeros + 1)
|
||||
|
||||
a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_N)
|
||||
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
|
||||
|
||||
# Now we need to unpack b (which is N-bit values) into 32-bit values
|
||||
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
|
||||
b = (b - zeros) * scales # Scale and shift
|
||||
b = tl.trans(b)
|
||||
# ! Convert to fp16
|
||||
b = b.to(tl.float16)
|
||||
a = a.to(tl.float16)
|
||||
|
||||
accumulator += tl.dot(a, b)
|
||||
a_ptrs += BLOCK_SIZE_N
|
||||
b_ptrs += BLOCK_SIZE_N
|
||||
scales_ptrs += BLOCK_SIZE_N
|
||||
zeros_ptrs += (BLOCK_SIZE_N // infearure_per_bits)
|
||||
|
||||
c = accumulator.to(tl.float16)
|
||||
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bk[None, :]
|
||||
c_mask = (offs_am[:, None] < M) & (offs_bk[None, :] < K)
|
||||
tl.store(c_ptrs, c, mask=c_mask)
|
||||
|
||||
|
||||
def triton_matmul(input, qweight, scales, qzeros, g_idx, bits, maxq):
|
||||
assert input.shape[-1] == qweight.shape[0] * 32 // bits
|
||||
outshape = input.shape[:-1] + (qweight.shape[1],)
|
||||
input = input.reshape(-1, input.shape[-1])
|
||||
output = torch.empty((input.shape[0], qweight.shape[1]), device=scales.device, dtype=torch.float16)
|
||||
grid = lambda META: (triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(qweight.shape[1], META['BLOCK_SIZE_N']),)
|
||||
matmul_248_kernel[grid](input, qweight, output,
|
||||
scales, qzeros, g_idx,
|
||||
input.shape[0], qweight.shape[1], input.shape[1], bits, maxq,
|
||||
input.stride(0), input.stride(1),
|
||||
qweight.stride(0), qweight.stride(1),
|
||||
output.stride(0), output.stride(1),
|
||||
scales.stride(0), qzeros.stride(0))
|
||||
output = output.reshape(outshape)
|
||||
return output
|
||||
|
||||
|
||||
def triton_matmul_transpose(input, qweight, scales, qzeros, g_idx, bits, maxq):
|
||||
assert input.shape[-1] == qweight.shape[1]
|
||||
out_dim = qweight.shape[0] * 32 // bits
|
||||
outshape = input.shape[:-1] + (out_dim,)
|
||||
input = input.reshape(-1, input.shape[-1])
|
||||
output_shape_mid = (input.shape[0], out_dim)
|
||||
output = torch.empty((output_shape_mid[0], output_shape_mid[1]), device=scales.device, dtype=torch.float16)
|
||||
grid = lambda META: (triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(output_shape_mid[1], META['BLOCK_SIZE_K']),)
|
||||
trans_matmul_248_kernel[grid](input, qweight, output,
|
||||
scales, qzeros, g_idx,
|
||||
input.shape[0], qweight.shape[1], output_shape_mid[1], bits, maxq,
|
||||
input.stride(0), input.stride(1),
|
||||
qweight.stride(0), qweight.stride(1),
|
||||
output.stride(0), output.stride(1),
|
||||
scales.stride(0), qzeros.stride(0))
|
||||
output = output.reshape(outshape)
|
||||
return output
|
||||
|
|
|
|||
Loading…
Reference in New Issue