Create llama_flash_attn_monkey_patch.py
This commit is contained in:
parent
3ea18575c7
commit
7b18b39dd8
|
|
@ -0,0 +1,143 @@
|
||||||
|
from typing import List, Optional, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
|
||||||
|
import transformers
|
||||||
|
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding, apply_rotary_pos_emb
|
||||||
|
|
||||||
|
from einops import rearrange
|
||||||
|
|
||||||
|
from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func
|
||||||
|
from flash_attn.bert_padding import unpad_input, pad_input
|
||||||
|
|
||||||
|
class LlamaAttention(nn.Module):
|
||||||
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
hidden_size: int,
|
||||||
|
num_heads: int,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.hidden_size = hidden_size
|
||||||
|
self.num_heads = num_heads
|
||||||
|
self.head_dim = hidden_size // num_heads
|
||||||
|
|
||||||
|
if (self.head_dim * num_heads) != self.hidden_size:
|
||||||
|
raise ValueError(
|
||||||
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
||||||
|
f" and `num_heads`: {num_heads}).")
|
||||||
|
self.q_proj = nn.Linear(
|
||||||
|
hidden_size,
|
||||||
|
num_heads * self.head_dim,
|
||||||
|
bias=False,
|
||||||
|
)
|
||||||
|
self.k_proj = nn.Linear(
|
||||||
|
hidden_size,
|
||||||
|
num_heads * self.head_dim,
|
||||||
|
bias=False,
|
||||||
|
)
|
||||||
|
self.v_proj = nn.Linear(
|
||||||
|
hidden_size,
|
||||||
|
num_heads * self.head_dim,
|
||||||
|
bias=False,
|
||||||
|
)
|
||||||
|
self.o_proj = nn.Linear(
|
||||||
|
num_heads * self.head_dim,
|
||||||
|
hidden_size,
|
||||||
|
bias=False,
|
||||||
|
)
|
||||||
|
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim)
|
||||||
|
|
||||||
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
||||||
|
return tensor.view(bsz, seq_len, self.num_heads,
|
||||||
|
self.head_dim).transpose(1, 2).contiguous()
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
output_attentions: bool = False,
|
||||||
|
use_cache: bool = False,
|
||||||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
|
||||||
|
Optional[Tuple[torch.Tensor]]]:
|
||||||
|
"""Input shape: Batch x Time x Channel
|
||||||
|
|
||||||
|
attention_mask: [bsz, q_len]
|
||||||
|
"""
|
||||||
|
bsz, q_len, _ = hidden_states.size()
|
||||||
|
|
||||||
|
query_states = self.q_proj(hidden_states).view(
|
||||||
|
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||||
|
key_states = self.k_proj(hidden_states).view(
|
||||||
|
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||||
|
value_states = self.v_proj(hidden_states).view(
|
||||||
|
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||||
|
# [bsz, q_len, nh, hd]
|
||||||
|
# [bsz, nh, q_len, hd]
|
||||||
|
|
||||||
|
kv_seq_len = key_states.shape[-2]
|
||||||
|
offset = 0
|
||||||
|
if past_key_value is not None:
|
||||||
|
offset = past_key_value[0].shape[-2]
|
||||||
|
kv_seq_len += offset
|
||||||
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||||
|
query_states, key_states = apply_rotary_pos_emb(query_states,
|
||||||
|
key_states,
|
||||||
|
cos,
|
||||||
|
sin,
|
||||||
|
offset=offset)
|
||||||
|
# [bsz, nh, t, hd]
|
||||||
|
assert not output_attentions, "output_attentions is not supported"
|
||||||
|
assert not use_cache, "use_cache is not supported"
|
||||||
|
assert past_key_value is None, "past_key_value is not supported"
|
||||||
|
|
||||||
|
# Flash attention codes from
|
||||||
|
# https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/flash_attention.py
|
||||||
|
|
||||||
|
# transform the data into the format required by flash attention
|
||||||
|
qkv = torch.stack([query_states, key_states, value_states], dim=2) # [bsz, nh, 3, q_len, hd]
|
||||||
|
qkv = qkv.transpose(1, 3) # [bsz, q_len, 3, nh, hd]
|
||||||
|
# We have disabled _prepare_decoder_attention_mask in LlamaModel
|
||||||
|
# the attention_mask should be the same as the key_padding_mask
|
||||||
|
key_padding_mask = attention_mask
|
||||||
|
|
||||||
|
|
||||||
|
if key_padding_mask is None:
|
||||||
|
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
|
||||||
|
max_s = q_len
|
||||||
|
cu_q_lens = torch.arange(0, (bsz + 1) * q_len, step=q_len, dtype=torch.int32,
|
||||||
|
device=qkv.device)
|
||||||
|
output = flash_attn_unpadded_qkvpacked_func(
|
||||||
|
qkv, cu_q_lens, max_s, 0.0,
|
||||||
|
softmax_scale=None, causal=True
|
||||||
|
)
|
||||||
|
output = rearrange(output, '(b s) ... -> b s ...', b=bsz)
|
||||||
|
else:
|
||||||
|
nheads = qkv.shape[-2]
|
||||||
|
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
|
||||||
|
x_unpad, indices, cu_q_lens, max_s = unpad_input(x, key_padding_mask)
|
||||||
|
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
|
||||||
|
output_unpad = flash_attn_unpadded_qkvpacked_func(
|
||||||
|
x_unpad, cu_q_lens, max_s, 0.0,
|
||||||
|
softmax_scale=None, causal=True
|
||||||
|
)
|
||||||
|
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
|
||||||
|
indices, bsz, q_len),
|
||||||
|
'b s (h d) -> b s h d', h=nheads)
|
||||||
|
return self.o_proj(rearrange(output,
|
||||||
|
'b s h d -> b s (h d)')), None, None
|
||||||
|
|
||||||
|
|
||||||
|
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
||||||
|
def _prepare_decoder_attention_mask(self, attention_mask, input_shape,
|
||||||
|
inputs_embeds, past_key_values_length):
|
||||||
|
# [bsz, seq_len]
|
||||||
|
return attention_mask
|
||||||
|
|
||||||
|
|
||||||
|
def replace_llama_attn_with_flash_attn():
|
||||||
|
transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = _prepare_decoder_attention_mask
|
||||||
|
transformers.models.llama.modeling_llama.LlamaAttention = LlamaAttention
|
||||||
Loading…
Reference in New Issue