Delete autograd_4bit.py

File moved to autograd_4bit module
This commit is contained in:
Andrey Glushenkov 2023-04-06 02:31:06 +03:00 committed by GitHub
parent f20570343f
commit 4a2d23aa29
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 0 additions and 220 deletions

View File

@ -1,220 +0,0 @@
import matmul_utils_4bit as mm4b
import torch
import torch.nn as nn
import time
import math
class AutogradMatmul4bit(torch.autograd.Function):
@staticmethod
def forward(ctx, x, qweight, scales, zeros, groupsize=-1):
ctx.save_for_backward(qweight, scales, zeros)
ctx.groupsize = groupsize
if groupsize == -1:
output = mm4b._matmul4bit_v1_recons(x, qweight, scales, zeros)
else:
output = mm4b._matmul4bit_v2_recons(x, qweight, scales, zeros, groupsize)
output = output.clone()
return output
@staticmethod
def backward(ctx, grad_output):
qweight, scales, zeros = ctx.saved_tensors
groupsize = ctx.groupsize
if groupsize == -1:
grad = mm4b._matmul4bit_v1_recons(grad_output, qweight, scales, zeros, transpose=True)
else:
grad = mm4b._matmul4bit_v2_recons(grad_output, qweight, scales, zeros, groupsize=groupsize, transpose=True)
return grad, None, None, None, None
# Assumes layer is perfectly divisible into 256 * 256 blocks
class Autograd4bitQuantLinear(nn.Module):
def __init__(self, infeatures, outfeatures, groupsize=-1):
super().__init__()
bits = 4
self.in_features = infeatures
self.out_features = outfeatures
self.bits = bits
self.groupsize = groupsize
if groupsize == -1:
self.register_buffer('zeros', torch.empty((outfeatures, 1)))
self.register_buffer('scales', torch.empty((outfeatures, 1)))
else:
self.register_buffer('qzeros',
torch.empty((math.ceil(infeatures/groupsize), outfeatures // 256 * (bits * 8)), dtype=torch.int)
)
self.register_buffer('scales', torch.empty((math.ceil(infeatures/groupsize), outfeatures)))
self.register_buffer('g_idx', torch.tensor([i // self.groupsize for i in range(infeatures)], dtype = torch.int32))
self.bias = nn.Parameter(torch.empty(outfeatures))
self.register_buffer(
'qweight', torch.empty((infeatures // 256 * (bits * 8), outfeatures), dtype=torch.int)
)
def forward(self, x):
if torch.is_grad_enabled():
out = AutogradMatmul4bit.apply(x, self.qweight, self.scales,
self.qzeros if self.groupsize != -1 else self.zeros, self.groupsize)
out.add_(self.bias)
else:
out = mm4b.matmul4bit(x, self.qweight, self.scales,
self.qzeros if self.groupsize != -1 else self.zeros, self.groupsize)
out.add_(self.bias)
return out
def make_quant_for_4bit_autograd(module, names, name='', groupsize=-1):
if isinstance(module, Autograd4bitQuantLinear):
return
for attr in dir(module):
tmp = getattr(module, attr)
name1 = name + '.' + attr if name != '' else attr
if name1 in names:
setattr(
module, attr, Autograd4bitQuantLinear(tmp.in_features, tmp.out_features, groupsize=groupsize)
)
for name1, child in module.named_children():
make_quant_for_4bit_autograd(child, names, name + '.' + name1 if name != '' else name1, groupsize=groupsize)
def model_to_half(model):
model.half()
for n, m in model.named_modules():
if isinstance(m, Autograd4bitQuantLinear):
if m.groupsize == -1:
m.zeros = m.zeros.half()
m.scales = m.scales.half()
m.bias = m.bias.half()
print('Converted as Half.')
def model_to_float(model):
model.float()
for n, m in model.named_modules():
if isinstance(m, Autograd4bitQuantLinear):
if m.groupsize == -1:
m.zeros = m.zeros.float()
m.scales = m.scales.float()
m.bias = m.bias.float()
print('Converted as Float.')
def find_layers(module, layers=[nn.Conv2d, nn.Linear], name=''):
if type(module) in layers:
return {name: module}
res = {}
for name1, child in module.named_children():
res.update(find_layers(
child, layers=layers, name=name + '.' + name1 if name != '' else name1
))
return res
def load_llama_model_4bit_low_ram(config_path, model_path, groupsize=-1, half=False, device_map="auto", seqlen=2048):
import accelerate
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
print("Loading Model ...")
t0 = time.time()
with accelerate.init_empty_weights():
config = LlamaConfig.from_pretrained(config_path)
model = LlamaForCausalLM(config)
model = model.eval()
layers = find_layers(model)
for name in ['lm_head']:
if name in layers:
del layers[name]
make_quant_for_4bit_autograd(model, layers, groupsize=groupsize)
model = accelerate.load_checkpoint_and_dispatch(
model=model,
checkpoint=model_path,
device_map=device_map,
no_split_module_classes=["LlamaDecoderLayer"]
)
model.seqlen = seqlen
if half:
model_to_half(model)
tokenizer = LlamaTokenizer.from_pretrained(config_path)
tokenizer.truncation_side = 'left'
print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
return model, tokenizer
def load_llama_model_4bit_low_ram_and_offload_to_cpu(config_path, model_path, lora_path=None, groupsize=-1, seqlen=2048, max_memory=None):
import accelerate
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
if max_memory is None:
max_memory = {0: '24Gib', 'cpu': '48Gib'}
print("Loading Model ...")
t0 = time.time()
with accelerate.init_empty_weights():
config = LlamaConfig.from_pretrained(config_path)
model = LlamaForCausalLM(config)
model = model.eval()
layers = find_layers(model)
for name in ['lm_head']:
if name in layers:
del layers[name]
make_quant_for_4bit_autograd(model, layers, groupsize=groupsize)
accelerate.load_checkpoint_in_model(model, checkpoint=model_path, device_map={'': 'cpu'})
# rotary_emb fix
for n, m in model.named_modules():
if 'rotary_emb' in n:
cos_cached = m.cos_cached.clone().cpu()
sin_cached = m.sin_cached.clone().cpu()
break
if lora_path is not None:
from peft import PeftModel
from peft.tuners.lora import Linear4bitLt
model = PeftModel.from_pretrained(model, lora_path, device_map={'': 'cpu'}, torch_dtype=torch.float32)
print('{} Lora Applied.'.format(lora_path))
model.seqlen = seqlen
print('Apply half ...')
for n, m in model.named_modules():
if isinstance(m, Autograd4bitQuantLinear) or ((lora_path is not None) and isinstance(m, Linear4bitLt)):
if m.groupsize == -1:
m.zeros = m.zeros.half()
m.scales = m.scales.half()
m.bias = m.bias.half()
print('Dispatching model ...')
device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LlamaDecoderLayer"])
model = accelerate.dispatch_model(model, device_map=device_map, offload_buffers=True, main_device=0)
torch.cuda.empty_cache()
print('Total {:.2f} Gib VRAM used.'.format(torch.cuda.memory_allocated() / 1024 / 1024))
# rotary_emb fix
for n, m in model.named_modules():
if 'rotary_emb' in n:
if getattr(m, '_hf_hook', None):
if isinstance(m._hf_hook, accelerate.hooks.SequentialHook):
hooks = m._hf_hook.hooks
else:
hooks = [m._hf_hook]
for hook in hooks:
if hook.offload:
if n + '.sin_cached' not in hook.weights_map.dataset.state_dict.keys():
hook.weights_map.dataset.state_dict[n + '.sin_cached'] = sin_cached.clone().cpu()
hook.weights_map.dataset.state_dict[n + '.cos_cached'] = cos_cached.clone().cpu()
tokenizer = LlamaTokenizer.from_pretrained(config_path)
tokenizer.truncation_side = 'left'
print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
return model, tokenizer