Delete autograd_4bit.py
File moved to autograd_4bit module
This commit is contained in:
parent
f20570343f
commit
4a2d23aa29
220
autograd_4bit.py
220
autograd_4bit.py
|
|
@ -1,220 +0,0 @@
|
|||
import matmul_utils_4bit as mm4b
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import time
|
||||
import math
|
||||
|
||||
|
||||
class AutogradMatmul4bit(torch.autograd.Function):
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, x, qweight, scales, zeros, groupsize=-1):
|
||||
ctx.save_for_backward(qweight, scales, zeros)
|
||||
ctx.groupsize = groupsize
|
||||
if groupsize == -1:
|
||||
output = mm4b._matmul4bit_v1_recons(x, qweight, scales, zeros)
|
||||
else:
|
||||
output = mm4b._matmul4bit_v2_recons(x, qweight, scales, zeros, groupsize)
|
||||
output = output.clone()
|
||||
return output
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
qweight, scales, zeros = ctx.saved_tensors
|
||||
groupsize = ctx.groupsize
|
||||
if groupsize == -1:
|
||||
grad = mm4b._matmul4bit_v1_recons(grad_output, qweight, scales, zeros, transpose=True)
|
||||
else:
|
||||
grad = mm4b._matmul4bit_v2_recons(grad_output, qweight, scales, zeros, groupsize=groupsize, transpose=True)
|
||||
return grad, None, None, None, None
|
||||
|
||||
|
||||
# Assumes layer is perfectly divisible into 256 * 256 blocks
|
||||
class Autograd4bitQuantLinear(nn.Module):
|
||||
|
||||
def __init__(self, infeatures, outfeatures, groupsize=-1):
|
||||
super().__init__()
|
||||
bits = 4
|
||||
self.in_features = infeatures
|
||||
self.out_features = outfeatures
|
||||
self.bits = bits
|
||||
self.groupsize = groupsize
|
||||
if groupsize == -1:
|
||||
self.register_buffer('zeros', torch.empty((outfeatures, 1)))
|
||||
self.register_buffer('scales', torch.empty((outfeatures, 1)))
|
||||
else:
|
||||
self.register_buffer('qzeros',
|
||||
torch.empty((math.ceil(infeatures/groupsize), outfeatures // 256 * (bits * 8)), dtype=torch.int)
|
||||
)
|
||||
self.register_buffer('scales', torch.empty((math.ceil(infeatures/groupsize), outfeatures)))
|
||||
self.register_buffer('g_idx', torch.tensor([i // self.groupsize for i in range(infeatures)], dtype = torch.int32))
|
||||
self.bias = nn.Parameter(torch.empty(outfeatures))
|
||||
self.register_buffer(
|
||||
'qweight', torch.empty((infeatures // 256 * (bits * 8), outfeatures), dtype=torch.int)
|
||||
)
|
||||
|
||||
|
||||
def forward(self, x):
|
||||
if torch.is_grad_enabled():
|
||||
out = AutogradMatmul4bit.apply(x, self.qweight, self.scales,
|
||||
self.qzeros if self.groupsize != -1 else self.zeros, self.groupsize)
|
||||
out.add_(self.bias)
|
||||
else:
|
||||
out = mm4b.matmul4bit(x, self.qweight, self.scales,
|
||||
self.qzeros if self.groupsize != -1 else self.zeros, self.groupsize)
|
||||
out.add_(self.bias)
|
||||
return out
|
||||
|
||||
|
||||
def make_quant_for_4bit_autograd(module, names, name='', groupsize=-1):
|
||||
if isinstance(module, Autograd4bitQuantLinear):
|
||||
return
|
||||
for attr in dir(module):
|
||||
tmp = getattr(module, attr)
|
||||
name1 = name + '.' + attr if name != '' else attr
|
||||
if name1 in names:
|
||||
setattr(
|
||||
module, attr, Autograd4bitQuantLinear(tmp.in_features, tmp.out_features, groupsize=groupsize)
|
||||
)
|
||||
for name1, child in module.named_children():
|
||||
make_quant_for_4bit_autograd(child, names, name + '.' + name1 if name != '' else name1, groupsize=groupsize)
|
||||
|
||||
|
||||
def model_to_half(model):
|
||||
model.half()
|
||||
for n, m in model.named_modules():
|
||||
if isinstance(m, Autograd4bitQuantLinear):
|
||||
if m.groupsize == -1:
|
||||
m.zeros = m.zeros.half()
|
||||
m.scales = m.scales.half()
|
||||
m.bias = m.bias.half()
|
||||
print('Converted as Half.')
|
||||
|
||||
|
||||
def model_to_float(model):
|
||||
model.float()
|
||||
for n, m in model.named_modules():
|
||||
if isinstance(m, Autograd4bitQuantLinear):
|
||||
if m.groupsize == -1:
|
||||
m.zeros = m.zeros.float()
|
||||
m.scales = m.scales.float()
|
||||
m.bias = m.bias.float()
|
||||
print('Converted as Float.')
|
||||
|
||||
|
||||
def find_layers(module, layers=[nn.Conv2d, nn.Linear], name=''):
|
||||
if type(module) in layers:
|
||||
return {name: module}
|
||||
res = {}
|
||||
for name1, child in module.named_children():
|
||||
res.update(find_layers(
|
||||
child, layers=layers, name=name + '.' + name1 if name != '' else name1
|
||||
))
|
||||
return res
|
||||
|
||||
|
||||
def load_llama_model_4bit_low_ram(config_path, model_path, groupsize=-1, half=False, device_map="auto", seqlen=2048):
|
||||
import accelerate
|
||||
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
|
||||
|
||||
print("Loading Model ...")
|
||||
t0 = time.time()
|
||||
|
||||
with accelerate.init_empty_weights():
|
||||
config = LlamaConfig.from_pretrained(config_path)
|
||||
model = LlamaForCausalLM(config)
|
||||
model = model.eval()
|
||||
layers = find_layers(model)
|
||||
for name in ['lm_head']:
|
||||
if name in layers:
|
||||
del layers[name]
|
||||
make_quant_for_4bit_autograd(model, layers, groupsize=groupsize)
|
||||
model = accelerate.load_checkpoint_and_dispatch(
|
||||
model=model,
|
||||
checkpoint=model_path,
|
||||
device_map=device_map,
|
||||
no_split_module_classes=["LlamaDecoderLayer"]
|
||||
)
|
||||
|
||||
model.seqlen = seqlen
|
||||
|
||||
if half:
|
||||
model_to_half(model)
|
||||
|
||||
tokenizer = LlamaTokenizer.from_pretrained(config_path)
|
||||
tokenizer.truncation_side = 'left'
|
||||
|
||||
print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
|
||||
|
||||
return model, tokenizer
|
||||
|
||||
def load_llama_model_4bit_low_ram_and_offload_to_cpu(config_path, model_path, lora_path=None, groupsize=-1, seqlen=2048, max_memory=None):
|
||||
import accelerate
|
||||
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
|
||||
|
||||
if max_memory is None:
|
||||
max_memory = {0: '24Gib', 'cpu': '48Gib'}
|
||||
|
||||
print("Loading Model ...")
|
||||
t0 = time.time()
|
||||
|
||||
with accelerate.init_empty_weights():
|
||||
config = LlamaConfig.from_pretrained(config_path)
|
||||
model = LlamaForCausalLM(config)
|
||||
model = model.eval()
|
||||
layers = find_layers(model)
|
||||
for name in ['lm_head']:
|
||||
if name in layers:
|
||||
del layers[name]
|
||||
make_quant_for_4bit_autograd(model, layers, groupsize=groupsize)
|
||||
accelerate.load_checkpoint_in_model(model, checkpoint=model_path, device_map={'': 'cpu'})
|
||||
|
||||
# rotary_emb fix
|
||||
for n, m in model.named_modules():
|
||||
if 'rotary_emb' in n:
|
||||
cos_cached = m.cos_cached.clone().cpu()
|
||||
sin_cached = m.sin_cached.clone().cpu()
|
||||
break
|
||||
|
||||
if lora_path is not None:
|
||||
from peft import PeftModel
|
||||
from peft.tuners.lora import Linear4bitLt
|
||||
model = PeftModel.from_pretrained(model, lora_path, device_map={'': 'cpu'}, torch_dtype=torch.float32)
|
||||
print('{} Lora Applied.'.format(lora_path))
|
||||
|
||||
model.seqlen = seqlen
|
||||
|
||||
print('Apply half ...')
|
||||
for n, m in model.named_modules():
|
||||
if isinstance(m, Autograd4bitQuantLinear) or ((lora_path is not None) and isinstance(m, Linear4bitLt)):
|
||||
if m.groupsize == -1:
|
||||
m.zeros = m.zeros.half()
|
||||
m.scales = m.scales.half()
|
||||
m.bias = m.bias.half()
|
||||
|
||||
print('Dispatching model ...')
|
||||
device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LlamaDecoderLayer"])
|
||||
model = accelerate.dispatch_model(model, device_map=device_map, offload_buffers=True, main_device=0)
|
||||
torch.cuda.empty_cache()
|
||||
print('Total {:.2f} Gib VRAM used.'.format(torch.cuda.memory_allocated() / 1024 / 1024))
|
||||
|
||||
# rotary_emb fix
|
||||
for n, m in model.named_modules():
|
||||
if 'rotary_emb' in n:
|
||||
if getattr(m, '_hf_hook', None):
|
||||
if isinstance(m._hf_hook, accelerate.hooks.SequentialHook):
|
||||
hooks = m._hf_hook.hooks
|
||||
else:
|
||||
hooks = [m._hf_hook]
|
||||
for hook in hooks:
|
||||
if hook.offload:
|
||||
if n + '.sin_cached' not in hook.weights_map.dataset.state_dict.keys():
|
||||
hook.weights_map.dataset.state_dict[n + '.sin_cached'] = sin_cached.clone().cpu()
|
||||
hook.weights_map.dataset.state_dict[n + '.cos_cached'] = cos_cached.clone().cpu()
|
||||
|
||||
tokenizer = LlamaTokenizer.from_pretrained(config_path)
|
||||
tokenizer.truncation_side = 'left'
|
||||
|
||||
print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
|
||||
|
||||
return model, tokenizer
|
||||
Loading…
Reference in New Issue