add xformers support

This commit is contained in:
John Smith 2023-04-12 12:59:44 +08:00
parent 7871baf311
commit 4261bd8070
7 changed files with 115 additions and 5 deletions

View File

@ -15,7 +15,7 @@ class Finetune4bConfig:
warmup_steps: int, save_steps: int, save_total_limit: int, logging_steps: int,
checkpoint: bool, skip: bool, verbose: bool,
txt_row_thd: int, use_eos_token: bool, groupsize: int, v1: bool,
local_rank: int, flash_attention: bool, backend: str
local_rank: int, flash_attention: bool, xformers: bool, backend: str
):
"""
Args:
@ -50,6 +50,7 @@ class Finetune4bConfig:
v1 (bool): v1 model flag
local_rank (int): local rank if using torch.distributed.launch
flash_attention (bool): Enables flash attention
xformers (bool): use xformers or not
"""
self.dataset = dataset
self.ds_type = ds_type
@ -88,6 +89,7 @@ class Finetune4bConfig:
self.groupsize = groupsize
self.v1 = v1
self.flash_attention = flash_attention
self.xformers = xformers
self.backend = backend

View File

@ -70,6 +70,7 @@ def parse_commandline():
# Flash Attention
parser_training.add_argument("--flash_attention", action="store_true", help="enables flash attention, can improve performance and reduce VRAM use")
parser_training.add_argument("--xformers", action="store_true", help="enables xformers memory efficient attention, can improve performance and reduce VRAM use")
# Train Backend
parser_training.add_argument("--backend", type=str, default='cuda', help="Backend to use. Triton or Cuda.")
@ -111,5 +112,6 @@ def get_config() -> Finetune4bConfig:
v1=args["v1"],
local_rank=args["local_rank"],
flash_attention=args["flash_attention"],
xformers=args["xformers"],
backend=args["backend"],
)

View File

@ -23,6 +23,9 @@ ft_config = get_config()
if ft_config.flash_attention:
from monkeypatch.llama_flash_attn_monkey_patch import replace_llama_attn_with_flash_attn
replace_llama_attn_with_flash_attn()
elif ft_config.xformers:
from monkeypatch.llama_attn_hijack_xformers import hijack_llama_attention
hijack_llama_attention()
import autograd_4bit
if ft_config.backend.lower() == 'triton':

0
monkeypatch/__init__.py Normal file
View File

View File

@ -0,0 +1,101 @@
'''
Directly copied the code from https://github.com/oobabooga/text-generation-webui/pull/950/commits and made some adjustments
'''
import math
import sys
import torch
import torch.nn as nn
import transformers.models.llama.modeling_llama
from typing import Optional
from typing import Tuple
try:
import xformers.ops
except ImportError:
raise ImportError("Please install xformers to use this module")
def hijack_llama_attention():
transformers.models.llama.modeling_llama.LlamaAttention.forward = xformers_forward
print("Replaced attention with xformers_attention")
def xformers_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = transformers.models.llama.modeling_llama.apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
# [bsz, nh, t, hd]
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
#We only apply xformers optimizations if we don't need to output the whole attention matrix
if not output_attentions:
dtype = query_states.dtype
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
#This is a nasty hack. We know attention_mask in transformers is either LowerTriangular or all Zeros.
#We therefore check if one element in the upper triangular portion is zero. If it is, then the mask is all zeros.
if attention_mask is None or attention_mask[0, 0, 0, 1] == 0:
# input and output should be of form (bsz, q_len, num_heads, head_dim)
attn_output = xformers.ops.memory_efficient_attention(query_states, key_states, value_states, attn_bias=None)
else:
# input and output should be of form (bsz, q_len, num_heads, head_dim)
attn_output = xformers.ops.memory_efficient_attention(query_states, key_states, value_states, attn_bias=xformers.ops.LowerTriangularMask())
attn_weights = None
else:
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights, past_key_value

View File

@ -8,8 +8,11 @@ from transformers.models.llama.modeling_llama import LlamaConfig, LlamaRotaryEmb
from einops import rearrange
try:
from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func
from flash_attn.bert_padding import unpad_input, pad_input
except ImportError:
raise ImportError("Please install flash_attn to use this module")
class LlamaAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""

View File

@ -4,8 +4,7 @@ bitsandbytes
datasets
sentencepiece
safetensors
flash-attn
triton
einops
colorama
git+https://github.com/huggingface/transformers.git
git+https://github.com/sterlind/GPTQ-for-LLaMa.git@lora_4bit