From 17e6a1585fbd8f31a1c8a3e49841001f85f9ec43 Mon Sep 17 00:00:00 2001 From: John Smith Date: Wed, 12 Apr 2023 13:09:48 +0800 Subject: [PATCH] Update README.md --- README.md | 16 ++++++++++++++++ 1 file changed, 16 insertions(+) diff --git a/README.md b/README.md index 5c7d73d..a3a85d4 100644 --- a/README.md +++ b/README.md @@ -34,6 +34,8 @@ It's fast on a 3070 Ti mobile. Uses 5-6 GB of GPU RAM. * Added Flash attention support. (Use --flash-attention) * Added Triton backend to support model using groupsize and act-order. (Use --backend=triton) * Added g_idx support in cuda backend (need recompile cuda kernel) +* Added xformers support +* Removed triton, flash-atten from requirements.txt for compatibility # Requirements gptq-for-llama
@@ -102,3 +104,17 @@ python server.py It seems that we can apply a monkey patch for llama model. To use it, simply download the file from [MonkeyPatch](https://github.com/lm-sys/FastChat/blob/daa9c11080ceced2bd52c3e0027e4f64b1512683/fastchat/train/llama_flash_attn_monkey_patch.py). And also, flash-attention is needed, and currently do not support pytorch 2.0. Just add --flash-attention to use it for finetuning. + + +# Xformers + +* Install +``` +pip install xformers +``` + +* Usage +``` +from monkeypatch.llama_attn_hijack_xformers import hijack_llama_attention +hijack_llama_attention() +```