Merge branch 'main' into finetune-refactor
This commit is contained in:
commit
0879580006
|
|
@ -0,0 +1,61 @@
|
|||
from transformers.models.llama.modeling_llama import LlamaDecoderLayer
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
from torch.autograd import Variable
|
||||
import torch
|
||||
from torch import nn
|
||||
import numpy as np
|
||||
|
||||
|
||||
class NewForward:
|
||||
|
||||
def __init__(self, layer):
|
||||
self.layer = layer
|
||||
self.apply_patch()
|
||||
|
||||
def apply_patch(self):
|
||||
self.layer.old_forward_for_cp = self.layer.forward
|
||||
self.layer.forward = self.new_forward
|
||||
|
||||
def new_forward(self, *args, **kwargs):
|
||||
def func(*args):
|
||||
return self.layer.old_forward_for_cp(*args, **kwargs)
|
||||
output = checkpoint(func, *args)
|
||||
return output
|
||||
|
||||
|
||||
class VarWrapper:
|
||||
|
||||
def __init__(self, model):
|
||||
self.model = model
|
||||
self.apply_patch()
|
||||
print('Var Wrapper Patch Applied')
|
||||
|
||||
def apply_patch(self):
|
||||
self.model.old_forward_for_cp = self.model.forward
|
||||
self.model.forward = self.new_forward
|
||||
|
||||
def new_forward(self, *args, **kwargs):
|
||||
out = self.model.old_forward_for_cp(*args, **kwargs)
|
||||
out = Variable(out.data, requires_grad=True)
|
||||
return out
|
||||
|
||||
|
||||
def apply_gradient_checkpointing(model, checkpoint_ratio=1):
|
||||
new_forwards = []
|
||||
modules = []
|
||||
for n, m in model.named_modules():
|
||||
if isinstance(m, LlamaDecoderLayer):
|
||||
modules.append(m)
|
||||
if checkpoint_ratio < 1 and checkpoint_ratio > 0:
|
||||
checkpoint_locs = np.array((np.linspace(0, 1, int(len(modules) * checkpoint_ratio)) * (len(modules)-1)).round(), dtype=int)
|
||||
else:
|
||||
checkpoint_locs = np.arange(len(modules))
|
||||
for i in checkpoint_locs:
|
||||
m = modules[i]
|
||||
new_forwards.append(NewForward(m))
|
||||
print('Forward Patch Applied For Block {}'.format(i))
|
||||
for n, m in model.named_modules():
|
||||
if isinstance(m, torch.nn.Embedding):
|
||||
wrapper = VarWrapper(m)
|
||||
break
|
||||
return new_forwards, wrapper
|
||||
|
|
@ -4,8 +4,10 @@
|
|||
#include <cuda_runtime.h>
|
||||
#include <cuda_fp16.h>
|
||||
|
||||
#ifdef __CUDA_ARCH__
|
||||
#if __CUDA_ARCH__ < 700 && __CUDA_ARCH__ > 600
|
||||
// adapted from https://github.com/torch/cutorch/blob/master/lib/THC/THCAtomics.cuh
|
||||
__device__ __forceinline__ void atomicAdd(c10::Half* address, c10::Half val) {
|
||||
__device__ __forceinline__ void atomicAddHalf(__half* address, c10::Half val) {
|
||||
unsigned int *address_as_ui = reinterpret_cast<unsigned int *>(reinterpret_cast<char *>(address) - (reinterpret_cast<size_t>(address) & 2));
|
||||
unsigned int old = *address_as_ui;
|
||||
unsigned int assumed;
|
||||
|
|
@ -22,6 +24,8 @@ __device__ __forceinline__ void atomicAdd(c10::Half* address, c10::Half val) {
|
|||
// Note: uses integer comparison to avoid hang in case of NaN (since NaN != NaN)
|
||||
} while (assumed != old);
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
template <typename scalar_t>
|
||||
__global__ void VecQuant2MatMulKernel(
|
||||
|
|
@ -543,7 +547,14 @@ __global__ void VecQuant4MatMulHalfKernel(
|
|||
}
|
||||
|
||||
__half* mul2 = (__half*)mul;
|
||||
#ifdef __CUDA_ARCH__
|
||||
#if __CUDA_ARCH__ < 700 && __CUDA_ARCH__ > 600
|
||||
atomicAddHalf(&mul2[b * width + w], res);
|
||||
#else
|
||||
atomicAdd(&mul2[b * width + w], res);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
void vecquant4matmul_half_cuda(
|
||||
|
|
@ -616,7 +627,13 @@ __global__ void VecQuant4TransposeMatMulHalfKernel(
|
|||
}
|
||||
|
||||
__half* mul2 = (__half*)mul;
|
||||
#ifdef __CUDA_ARCH__
|
||||
#if __CUDA_ARCH__ < 700 && __CUDA_ARCH__ > 600
|
||||
atomicAddHalf(&mul2[n_cols * height * 8 + n_rows], res);
|
||||
#else
|
||||
atomicAdd(&mul2[n_cols * height * 8 + n_rows], res);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
void vecquant4transposematmul_half_cuda(
|
||||
|
|
|
|||
17
README.md
17
README.md
|
|
@ -1,11 +1,22 @@
|
|||
# Alpaca Lora 4bit
|
||||
Made some adjust for the code in peft and gptq for llama, and make it possible for lora finetuning with a 4 bits base model. The same adjustment can be made for 2, 3 and 8 bits.
|
||||
<br>
|
||||
~Still numerically unstable.~ Resolved.
|
||||
* Install Manual by s4rduk4r: https://github.com/s4rduk4r/alpaca_lora_4bit_readme/blob/main/README.md
|
||||
|
||||
# Update Logs
|
||||
* Resolved numerically unstable issue
|
||||
<br>
|
||||
Reconstruct fp16 matrix from 4bit data and call torch.matmul largely increased the inference speed.
|
||||
|
||||
* Reconstruct fp16 matrix from 4bit data and call torch.matmul largely increased the inference speed.
|
||||
<br>
|
||||
Added install script for windows and linux.
|
||||
|
||||
* Added install script for windows and linux.
|
||||
<br>
|
||||
|
||||
* Added Gradient Checkpointing. Now It can finetune 30b model 4bit on a single GPU with 24G VRAM with Gradient Checkpointing enabled. (finetune.py updated) (but would reduce training speed, so if having enough VRAM this option is not needed)
|
||||
<br>
|
||||
|
||||
* Added install manual by s4rduk4r
|
||||
<br>
|
||||
|
||||
# Requirements
|
||||
|
|
|
|||
12
finetune.py
12
finetune.py
|
|
@ -127,10 +127,10 @@ if not ft_config.skip:
|
|||
|
||||
print('Train completed.')
|
||||
|
||||
if not ft_config.checkpoint:
|
||||
# Save Model
|
||||
model.save_pretrained(ft_config.lora_out_dir)
|
||||
else:
|
||||
raise NotImplemented("TODO: Merge model + LoRA and save the whole checkpoint")
|
||||
# Save Model
|
||||
model.save_pretrained(ft_config.lora_out_dir)
|
||||
|
||||
print('Model Saved.')
|
||||
if ft_config.checkpoint:
|
||||
print("Warning: Merge model + LoRA and save the whole checkpoint not implemented yet.")
|
||||
|
||||
print('Model Saved.')
|
||||
|
|
@ -15,8 +15,9 @@ REM replace ./repository/GPTQ-for-LLaMa/quant_cuda.cpp and quant_cuda_kernel.cu
|
|||
copy .\GPTQ-for-LLaMa\quant_cuda.cpp .\repository\GPTQ-for-LLaMa\quant_cuda.cpp /Y
|
||||
copy .\GPTQ-for-LLaMa\quant_cuda_kernel.cu .\repository\GPTQ-for-LLaMa\quant_cuda_kernel.cu /Y
|
||||
|
||||
REM copy autograd_4bit.py into ./repository/GPTQ-for-LLaMa/autograd_4bit.py
|
||||
REM copy files into ./repository/GPTQ-for-LLaMa/
|
||||
copy .\GPTQ-for-LLaMa\autograd_4bit.py .\repository\GPTQ-for-LLaMa\autograd_4bit.py /Y
|
||||
copy .\GPTQ-for-LLaMa\gradient_checkpointing.py .\repository\GPTQ-for-LLaMa\gradient_checkpointing.py /Y
|
||||
|
||||
REM install quant_cuda
|
||||
cd .\repository\GPTQ-for-LLaMa
|
||||
|
|
|
|||
|
|
@ -19,8 +19,9 @@ cp ./peft/tuners/lora.py ./repository/peft/src/peft/tuners/lora.py
|
|||
cp ./GPTQ-for-LLaMa/quant_cuda.cpp ./repository/GPTQ-for-LLaMa/quant_cuda.cpp
|
||||
cp ./GPTQ-for-LLaMa/quant_cuda_kernel.cu ./repository/GPTQ-for-LLaMa/quant_cuda_kernel.cu
|
||||
|
||||
# Copy autograd_4bit.py into ./repository/GPTQ-for-LLaMa/autograd_4bit.py
|
||||
# Copy files into ./repository/GPTQ-for-LLaMa/
|
||||
cp ./GPTQ-for-LLaMa/autograd_4bit.py ./repository/GPTQ-for-LLaMa/autograd_4bit.py
|
||||
cp ./GPTQ-for-LLaMa/gradient_checkpointing.py ./repository/GPTQ-for-LLaMa/gradient_checkpointing.py
|
||||
|
||||
# Install quant_cuda and cd into ./repository/GPTQ-for-LLaMa
|
||||
cd ./repository/GPTQ-for-LLaMa
|
||||
|
|
|
|||
Loading…
Reference in New Issue