Merge branch 'main' into finetune-refactor

This commit is contained in:
John Smith 2023-03-25 10:29:02 +08:00 committed by GitHub
commit 0879580006
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 103 additions and 12 deletions

View File

@ -0,0 +1,61 @@
from transformers.models.llama.modeling_llama import LlamaDecoderLayer
from torch.utils.checkpoint import checkpoint
from torch.autograd import Variable
import torch
from torch import nn
import numpy as np
class NewForward:
def __init__(self, layer):
self.layer = layer
self.apply_patch()
def apply_patch(self):
self.layer.old_forward_for_cp = self.layer.forward
self.layer.forward = self.new_forward
def new_forward(self, *args, **kwargs):
def func(*args):
return self.layer.old_forward_for_cp(*args, **kwargs)
output = checkpoint(func, *args)
return output
class VarWrapper:
def __init__(self, model):
self.model = model
self.apply_patch()
print('Var Wrapper Patch Applied')
def apply_patch(self):
self.model.old_forward_for_cp = self.model.forward
self.model.forward = self.new_forward
def new_forward(self, *args, **kwargs):
out = self.model.old_forward_for_cp(*args, **kwargs)
out = Variable(out.data, requires_grad=True)
return out
def apply_gradient_checkpointing(model, checkpoint_ratio=1):
new_forwards = []
modules = []
for n, m in model.named_modules():
if isinstance(m, LlamaDecoderLayer):
modules.append(m)
if checkpoint_ratio < 1 and checkpoint_ratio > 0:
checkpoint_locs = np.array((np.linspace(0, 1, int(len(modules) * checkpoint_ratio)) * (len(modules)-1)).round(), dtype=int)
else:
checkpoint_locs = np.arange(len(modules))
for i in checkpoint_locs:
m = modules[i]
new_forwards.append(NewForward(m))
print('Forward Patch Applied For Block {}'.format(i))
for n, m in model.named_modules():
if isinstance(m, torch.nn.Embedding):
wrapper = VarWrapper(m)
break
return new_forwards, wrapper

View File

@ -4,8 +4,10 @@
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#ifdef __CUDA_ARCH__
#if __CUDA_ARCH__ < 700 && __CUDA_ARCH__ > 600
// adapted from https://github.com/torch/cutorch/blob/master/lib/THC/THCAtomics.cuh
__device__ __forceinline__ void atomicAdd(c10::Half* address, c10::Half val) {
__device__ __forceinline__ void atomicAddHalf(__half* address, c10::Half val) {
unsigned int *address_as_ui = reinterpret_cast<unsigned int *>(reinterpret_cast<char *>(address) - (reinterpret_cast<size_t>(address) & 2));
unsigned int old = *address_as_ui;
unsigned int assumed;
@ -22,6 +24,8 @@ __device__ __forceinline__ void atomicAdd(c10::Half* address, c10::Half val) {
// Note: uses integer comparison to avoid hang in case of NaN (since NaN != NaN)
} while (assumed != old);
}
#endif
#endif
template <typename scalar_t>
__global__ void VecQuant2MatMulKernel(
@ -543,7 +547,14 @@ __global__ void VecQuant4MatMulHalfKernel(
}
__half* mul2 = (__half*)mul;
#ifdef __CUDA_ARCH__
#if __CUDA_ARCH__ < 700 && __CUDA_ARCH__ > 600
atomicAddHalf(&mul2[b * width + w], res);
#else
atomicAdd(&mul2[b * width + w], res);
#endif
#endif
}
void vecquant4matmul_half_cuda(
@ -616,7 +627,13 @@ __global__ void VecQuant4TransposeMatMulHalfKernel(
}
__half* mul2 = (__half*)mul;
#ifdef __CUDA_ARCH__
#if __CUDA_ARCH__ < 700 && __CUDA_ARCH__ > 600
atomicAddHalf(&mul2[n_cols * height * 8 + n_rows], res);
#else
atomicAdd(&mul2[n_cols * height * 8 + n_rows], res);
#endif
#endif
}
void vecquant4transposematmul_half_cuda(

View File

@ -1,11 +1,22 @@
# Alpaca Lora 4bit
Made some adjust for the code in peft and gptq for llama, and make it possible for lora finetuning with a 4 bits base model. The same adjustment can be made for 2, 3 and 8 bits.
<br>
~Still numerically unstable.~ Resolved.
* Install Manual by s4rduk4r: https://github.com/s4rduk4r/alpaca_lora_4bit_readme/blob/main/README.md
# Update Logs
* Resolved numerically unstable issue
<br>
Reconstruct fp16 matrix from 4bit data and call torch.matmul largely increased the inference speed.
* Reconstruct fp16 matrix from 4bit data and call torch.matmul largely increased the inference speed.
<br>
Added install script for windows and linux.
* Added install script for windows and linux.
<br>
* Added Gradient Checkpointing. Now It can finetune 30b model 4bit on a single GPU with 24G VRAM with Gradient Checkpointing enabled. (finetune.py updated) (but would reduce training speed, so if having enough VRAM this option is not needed)
<br>
* Added install manual by s4rduk4r
<br>
# Requirements

View File

@ -127,10 +127,10 @@ if not ft_config.skip:
print('Train completed.')
if not ft_config.checkpoint:
# Save Model
model.save_pretrained(ft_config.lora_out_dir)
else:
raise NotImplemented("TODO: Merge model + LoRA and save the whole checkpoint")
# Save Model
model.save_pretrained(ft_config.lora_out_dir)
print('Model Saved.')
if ft_config.checkpoint:
print("Warning: Merge model + LoRA and save the whole checkpoint not implemented yet.")
print('Model Saved.')

View File

@ -15,8 +15,9 @@ REM replace ./repository/GPTQ-for-LLaMa/quant_cuda.cpp and quant_cuda_kernel.cu
copy .\GPTQ-for-LLaMa\quant_cuda.cpp .\repository\GPTQ-for-LLaMa\quant_cuda.cpp /Y
copy .\GPTQ-for-LLaMa\quant_cuda_kernel.cu .\repository\GPTQ-for-LLaMa\quant_cuda_kernel.cu /Y
REM copy autograd_4bit.py into ./repository/GPTQ-for-LLaMa/autograd_4bit.py
REM copy files into ./repository/GPTQ-for-LLaMa/
copy .\GPTQ-for-LLaMa\autograd_4bit.py .\repository\GPTQ-for-LLaMa\autograd_4bit.py /Y
copy .\GPTQ-for-LLaMa\gradient_checkpointing.py .\repository\GPTQ-for-LLaMa\gradient_checkpointing.py /Y
REM install quant_cuda
cd .\repository\GPTQ-for-LLaMa

View File

@ -19,8 +19,9 @@ cp ./peft/tuners/lora.py ./repository/peft/src/peft/tuners/lora.py
cp ./GPTQ-for-LLaMa/quant_cuda.cpp ./repository/GPTQ-for-LLaMa/quant_cuda.cpp
cp ./GPTQ-for-LLaMa/quant_cuda_kernel.cu ./repository/GPTQ-for-LLaMa/quant_cuda_kernel.cu
# Copy autograd_4bit.py into ./repository/GPTQ-for-LLaMa/autograd_4bit.py
# Copy files into ./repository/GPTQ-for-LLaMa/
cp ./GPTQ-for-LLaMa/autograd_4bit.py ./repository/GPTQ-for-LLaMa/autograd_4bit.py
cp ./GPTQ-for-LLaMa/gradient_checkpointing.py ./repository/GPTQ-for-LLaMa/gradient_checkpointing.py
# Install quant_cuda and cd into ./repository/GPTQ-for-LLaMa
cd ./repository/GPTQ-for-LLaMa