264 lines
9.3 KiB
Python
264 lines
9.3 KiB
Python
#!/usr/bin/env python3
|
|
|
|
# This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
|
|
import os
|
|
import mimetypes
|
|
import re
|
|
|
|
from argparse import ArgumentParser
|
|
from langchain import hub
|
|
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
|
|
from langchain.chains.combine_documents import create_stuff_documents_chain
|
|
from langchain.retrievers.multi_query import MultiQueryRetriever
|
|
from langchain_community.chat_message_histories import SQLChatMessageHistory
|
|
from langchain_community.document_loaders import PyPDFLoader, TextLoader, WebBaseLoader
|
|
from langchain_core import vectorstores
|
|
from langchain_core.documents import Document
|
|
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
|
|
from langchain_core.output_parsers import StrOutputParser
|
|
from langchain_core.prompts import MessagesPlaceholder, ChatPromptTemplate
|
|
from langchain_core.runnables import RunnablePassthrough
|
|
from langchain_core.runnables.history import RunnableWithMessageHistory
|
|
from langchain_core.vectorstores import InMemoryVectorStore
|
|
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
|
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
from langgraph.checkpoint.memory import MemorySaver
|
|
from langgraph.graph import START, StateGraph
|
|
from langgraph.graph.message import add_messages
|
|
from sys import stderr
|
|
from termcolor import colored
|
|
from typing import Sequence
|
|
from typing_extensions import Annotated, TypedDict
|
|
from urllib.parse import urlparse
|
|
from termcolor import colored
|
|
|
|
def main():
|
|
#
|
|
# Parse Arguments
|
|
#
|
|
parser = ArgumentParser()
|
|
parser.add_argument("-v", help="increase output verbosity", action="store_true")
|
|
parser.add_argument("-m", type=str, help="select OpenAI model to use", default="gpt-3.5-turbo")
|
|
args, paths = parser.parse_known_args()
|
|
|
|
#
|
|
# load LLM
|
|
#
|
|
llm = ChatOpenAI(model=args.m)
|
|
if args.v:
|
|
print(">>> Loaded LLM: %s" % llm, file=stderr)
|
|
|
|
#
|
|
# load documents
|
|
#
|
|
|
|
loaders = {
|
|
"text/plain": lambda file: TextLoader(file).load(),
|
|
"application/pdf": lambda file: PyPDFLoader(file).load(),
|
|
"url": lambda file: WebBaseLoader(file).load(),
|
|
}
|
|
|
|
# docs = PyPDFLoader(paths[0]).load()
|
|
docs = []
|
|
|
|
for path in paths:
|
|
# check if url:
|
|
if urlparse(path).scheme in ("http", "https"):
|
|
if args.v:
|
|
print(">>> Loading %s as %s" % (path, "url"), file=stderr)
|
|
docs.extend(loaders["url"](path))
|
|
|
|
# check if file exists:
|
|
elif not os.path.exists(path):
|
|
raise FileNotFoundError("%s not found" % path)
|
|
|
|
# detect filetype
|
|
else:
|
|
mimetype, _ = mimetypes.guess_type(path)
|
|
if mimetype not in loaders:
|
|
raise ValueError("Unsupported file type: %s" % mimetype)
|
|
else:
|
|
if args.v:
|
|
print(">>> Loading %s as %s" % (path, mimetype), file=stderr)
|
|
docs.extend(loaders[mimetype](path))
|
|
|
|
splits = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200).split_documents(docs)
|
|
if args.v:
|
|
print(">>> Split %d documents into %d chunks" % (len(docs), len(splits)), file=stderr)
|
|
|
|
# vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings(openai_api_key=APIKeys.openai))
|
|
|
|
vectorstore = InMemoryVectorStore(embedding=OpenAIEmbeddings())
|
|
vectorstore.add_documents(splits)
|
|
if args.v:
|
|
print(">>> Vectorized %d chunks" % len(splits), file=stderr)
|
|
|
|
simple_retriever = vectorstore.as_retriever()
|
|
retriever = MultiQueryRetriever.from_llm(retriever=simple_retriever, llm=llm)
|
|
if args.v:
|
|
print(">>> Created retriever", file=stderr)
|
|
|
|
#
|
|
# History Prompt
|
|
#
|
|
contextualize_q_system_prompt = (
|
|
"Given a chat history and the latest user question "
|
|
"which might reference context in the chat history, "
|
|
"formulate a standalone question which can be understood "
|
|
"without the chat history. Do NOT answer the question, "
|
|
"just reformulate it if needed and otherwise return it as is."
|
|
)
|
|
|
|
contextualize_q_prompt = ChatPromptTemplate.from_messages(
|
|
[
|
|
("system", contextualize_q_system_prompt),
|
|
MessagesPlaceholder("chat_history"),
|
|
("human", "{input}"),
|
|
]
|
|
)
|
|
|
|
|
|
history_aware_retriever = create_history_aware_retriever(
|
|
llm, retriever, contextualize_q_prompt
|
|
)
|
|
|
|
if args.v:
|
|
print(">>> Created history-aware retriever", file=stderr)
|
|
|
|
#
|
|
# Prompt
|
|
#
|
|
system_prompt = (
|
|
"You are an assistant for question-answering tasks. "
|
|
"Use the following pieces of retrieved context to answer "
|
|
"the question. If you don't know the answer, say that you "
|
|
"don't know. Answer as detailed and easy to understand as possible."
|
|
"\n\n"
|
|
"{context}"
|
|
)
|
|
|
|
qa_prompt = ChatPromptTemplate.from_messages(
|
|
[
|
|
("system", system_prompt),
|
|
MessagesPlaceholder("chat_history"),
|
|
("human", "{input}"),
|
|
]
|
|
)
|
|
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)
|
|
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
|
|
|
|
if args.v:
|
|
print(">>> Created RAG chain", file=stderr)
|
|
|
|
#
|
|
# Memory
|
|
#
|
|
|
|
# We then define a simple node that runs the `rag_chain`.
|
|
# The `return` values of the node update the graph state, so here we just
|
|
# update the chat history with the input message and response.
|
|
def call_model(state: State):
|
|
response = rag_chain.invoke(state)
|
|
return {
|
|
"chat_history": [
|
|
HumanMessage(state["input"]),
|
|
AIMessage(response["answer"]),
|
|
],
|
|
"context": response["context"],
|
|
"answer": response["answer"],
|
|
}
|
|
|
|
# Our graph consists only of one node:
|
|
workflow = StateGraph(state_schema=State)
|
|
workflow.add_edge(START, "model")
|
|
workflow.add_node("model", call_model)
|
|
|
|
# Finally, we compile the graph with a checkpointer object.
|
|
# This persists the state, in this case in memory.
|
|
memory = MemorySaver()
|
|
app = workflow.compile(checkpointer=memory)
|
|
|
|
if args.v:
|
|
print(">>> Created app memory\n", file=stderr)
|
|
#
|
|
# Chat
|
|
#
|
|
config = {"configurable": {"thread_id": "abc123"}}
|
|
|
|
while True:
|
|
try:
|
|
question = input(colored("Q: ", "yellow", attrs=["reverse"]))
|
|
except EOFError:
|
|
print()
|
|
break
|
|
|
|
print(colored("A: ", "green", attrs=["reverse"]), parse_markdown(app.invoke({"input": question},
|
|
config=config)["answer"]), end="\n\n")
|
|
|
|
|
|
def parse_markdown(text):
|
|
lines = text.splitlines()
|
|
formatted_text = ""
|
|
in_code_block = False
|
|
|
|
for line in lines:
|
|
# Check for code blocks
|
|
if line.startswith("```"):
|
|
in_code_block = not in_code_block
|
|
continue # Skip the line with ```
|
|
elif in_code_block:
|
|
formatted_text += colored(line + "\n", "green")
|
|
continue
|
|
|
|
# Check for headers
|
|
if line.startswith("#"):
|
|
level = len(line) - len(line.lstrip("#"))
|
|
header_text = line.lstrip("#").strip()
|
|
formatted_text += colored(header_text, "blue", attrs=["bold"]) + "\n"
|
|
continue
|
|
|
|
# Check for blockquotes
|
|
if line.startswith(">"):
|
|
quote_text = line.lstrip(">").strip()
|
|
formatted_text += colored(quote_text, "yellow") + "\n"
|
|
continue
|
|
|
|
# Check for tables (rows separated by "|")
|
|
if "|" in line:
|
|
table_row = "\t".join(line.split("|")).strip()
|
|
formatted_text += table_row + "\n"
|
|
continue
|
|
|
|
# Inline formatting for bold, italic, and code (keeping the symbols)
|
|
# Bold (**text** or __text__)
|
|
line = re.sub(r"(\*\*|__)(.*?)(\*\*|__)", lambda m: colored(m.group(1) + m.group(2) + m.group(3), attrs=["bold"]), line)
|
|
# Italic (*text* or _text_)
|
|
line = re.sub(r"(\*|_)(.*?)(\*|_)", lambda m: colored(m.group(1) + m.group(2) + m.group(3), attrs=["underline"]), line)
|
|
# Inline code (`code`)
|
|
line = re.sub(r"(`)(.*?)`", lambda m: colored(m.group(1) + m.group(2) + "`", "green"), line)
|
|
|
|
# List items (bullets and numbers)
|
|
# Bulleted list
|
|
line = re.sub(r"^(\s*[-*])\s", lambda m: colored(m.group(1), "cyan") + " ", line)
|
|
# Numbered list
|
|
line = re.sub(r"^(\s*\d+\.)\s", lambda m: colored(m.group(1), "cyan") + " ", line)
|
|
|
|
# Add processed line to formatted text
|
|
formatted_text += line + "\n"
|
|
|
|
return formatted_text
|
|
|
|
|
|
class State(TypedDict):
|
|
input: str
|
|
chat_history: Annotated[Sequence[BaseMessage], add_messages]
|
|
context: str
|
|
answer: str
|
|
|
|
if __name__ == "__main__":
|
|
main() |