ragger/ragger.py

240 lines
8.2 KiB
Python
Executable File

#!/usr/bin/env python3
# This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along with this program. If not, see <https://www.gnu.org/licenses/>.
import os
import mimetypes
import readline
from argparse import ArgumentParser
# from langchain import hub
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.retrievers.multi_query import MultiQueryRetriever
# from langchain_community.chat_message_histories import SQLChatMessageHistory
from langchain_community.document_loaders import TextLoader, WebBaseLoader #, PyPDFLoader
from langchain_pymupdf4llm import PyMuPDF4LLMLoader
# from langchain_core import vectorstores
# from langchain_core.documents import Document
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
# from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import MessagesPlaceholder, ChatPromptTemplate
from langchain_core.runnables import RunnableConfig #, RunnablePassthrough
# from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_core.vectorstores import InMemoryVectorStore
# from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_ollama import OllamaEmbeddings, ChatOllama
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import START, StateGraph
from langgraph.graph.message import add_messages
from sys import stderr
from term_color_md import render as md_render
from typing import NotRequired, Sequence
from typing_extensions import Annotated, TypedDict
from urllib.parse import urlparse
from termcolor import colored
def main():
#
# Readline settings
#
readline.parse_and_bind('set editing-mode vi')
#
# Parse Arguments
#
parser = ArgumentParser()
parser.add_argument("-v", help="increase output verbosity", action="store_true")
parser.add_argument(
"-m",
type=str,
help="select language model to use",
default="gpt-oss"
)
parser.add_argument(
"-s",
help="don't split documents",
action="store_true"
)
args, paths = parser.parse_known_args()
#
# load LLM
#
# llm = ChatOpenAI(model=args.m)
llm = ChatOllama(model=args.m)
if args.v: print(">>> Loaded LLM: %s" % llm, file=stderr)
#
# load documents
#
splitter_func = lambda docs: docs
if not args.s:
splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
splitter_func = lambda docs: splitter.split_documents(docs)
if args.s: pdf_mode = 'single'
else: pdf_mode = 'page'
loaders = {
"text": lambda file: splitter_func(TextLoader(file).load()),
"application/pdf": lambda file: PyMuPDF4LLMLoader(file, mode=pdf_mode).load(),
# "application/pdf": lambda file: PyPDFLoader(file).load(),
"url": lambda file: splitter_func(WebBaseLoader(file).load()),
}
# docs = PyPDFLoader(paths[0]).load()
docs = []
for path in paths:
# check if url:
if urlparse(path).scheme in ("http", "https"):
if args.v: print(">>> Loading %s as %s" % (path, "url"), file=stderr)
docs.extend(loaders["url"](path))
# check if file exists:
elif not os.path.exists(path):
raise FileNotFoundError("%s not found" % path)
# detect filetype
else:
mimetype, _ = mimetypes.guess_type(path)
if (mimetype or "").startswith("text/"):
mimetype = "text"
if mimetype not in loaders:
raise ValueError("Unsupported file type: %s" % mimetype)
else:
if args.v: print(">>> Loading %s as %s" % (path, mimetype), file=stderr)
docs.extend(loaders[mimetype](path))
# vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings(openai_api_key=APIKeys.openai))
vectorstore = InMemoryVectorStore(
embedding=OllamaEmbeddings(model='nomic-embed-text')
)
vectorstore.add_documents(docs)
if args.v: print(">>> Vectorized %d chunks" % len(docs), file=stderr)
simple_retriever = vectorstore.as_retriever()
retriever = MultiQueryRetriever.from_llm(
retriever=simple_retriever,
llm=llm
)
if args.v: print(">>> Created retriever", file=stderr)
#
# History Prompt
#
contextualize_q_system_prompt = (
"Given a chat history and the latest user question "
"which might reference context in the chat history, "
"formulate a standalone question which can be understood "
"without the chat history. Do NOT answer the question, "
"just reformulate it if needed and otherwise return it as is."
)
contextualize_q_prompt = ChatPromptTemplate.from_messages(
[
("system", contextualize_q_system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
]
)
history_aware_retriever = create_history_aware_retriever(
llm, retriever, contextualize_q_prompt
)
if args.v: print(">>> Created history-aware retriever", file=stderr)
#
# Prompt
#
system_prompt = (
"You are an assistant for question-answering tasks. "
"Use the following pieces of retrieved context to answer "
"the question. If you don't know the answer, say that you "
"don't know. Answer as detailed and easy to understand as possible."
"\n\n"
"{context}"
)
qa_prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
]
)
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)
rag_chain = create_retrieval_chain(
history_aware_retriever,
question_answer_chain
)
if args.v: print(">>> Created RAG chain", file=stderr)
#
# Memory
#
# We then define a simple node that runs the `rag_chain`.
# The `return` values of the node update the graph state, so here we just
# update the chat history with the input message and response.
def call_model(state: State):
response = rag_chain.invoke(state)
return {
"chat_history": [
HumanMessage(state["input"]),
AIMessage(response["answer"]),
],
"context": response["context"],
"answer": response["answer"],
}
# Our graph consists only of one node:
workflow = StateGraph(state_schema=State)
workflow.add_edge(START, "model")
workflow.add_node("model", call_model)
# Finally, we compile the graph with a checkpointer object.
# This persists the state, in this case in memory.
memory = MemorySaver()
app = workflow.compile(checkpointer=memory)
if args.v: print(">>> Created app memory\n", file=stderr)
#
# Chat
#
config: RunnableConfig = {"configurable": {"thread_id": "abc123"}}
while True:
try:
question = input(colored("Q:", "yellow", attrs=["reverse"]) + " ")
except EOFError:
print()
break
print(colored("A:", "green", attrs=["reverse"]), md_render(app.invoke({"input": question},
config=config)["answer"]), end="\n\n")
# We define a dict representing the state of the application.
# This state has the same input and output keys as `rag_chain`.
class State(TypedDict):
input: str
chat_history: NotRequired[Annotated[Sequence[BaseMessage], add_messages]]
context: NotRequired[str]
answer: NotRequired[str]
if __name__ == "__main__":
main()