added splitting options

This commit is contained in:
Ian Griffin 2025-11-10 13:31:25 +08:00
parent cf4fdb6fb2
commit 91241a597b
1 changed files with 47 additions and 40 deletions

View File

@ -12,20 +12,20 @@ import re
import readline
from argparse import ArgumentParser
from langchain import hub
# from langchain import hub
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.retrievers.multi_query import MultiQueryRetriever
from langchain_community.chat_message_histories import SQLChatMessageHistory
# from langchain_community.chat_message_histories import SQLChatMessageHistory
from langchain_community.document_loaders import TextLoader, WebBaseLoader #, PyPDFLoader
from langchain_pymupdf4llm import PyMuPDF4LLMLoader
from langchain_core import vectorstores
from langchain_core.documents import Document
# from langchain_core import vectorstores
# from langchain_core.documents import Document
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
from langchain_core.output_parsers import StrOutputParser
# from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import MessagesPlaceholder, ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_core.runnables import RunnableConfig #, RunnablePassthrough
# from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_core.vectorstores import InMemoryVectorStore
# from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_ollama import OllamaEmbeddings, ChatOllama
@ -35,7 +35,7 @@ from langgraph.graph import START, StateGraph
from langgraph.graph.message import add_messages
from sys import stderr
from termcolor import colored
from typing import Sequence
from typing import NotRequired, Sequence
from typing_extensions import Annotated, TypedDict
from urllib.parse import urlparse
from termcolor import colored
@ -56,6 +56,11 @@ def main():
help="select language model to use",
default="gpt-oss"
)
parser.add_argument(
"-s",
help="don't split documents",
action="store_true"
)
args, paths = parser.parse_known_args()
#
@ -68,12 +73,23 @@ def main():
#
# load documents
#
splitter_func = lambda docs: docs
if not args.s:
splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
splitter_func = lambda docs: splitter.split_documents(docs)
if args.s: pdf_mode = 'single'
else: pdf_mode = 'page'
loaders = {
"text": lambda file: TextLoader(file).load(),
"application/pdf": lambda file: PyMuPDF4LLMLoader(file).load(),
"text": lambda file: splitter_func(TextLoader(file).load()),
"application/pdf": lambda file: PyMuPDF4LLMLoader(file, mode=pdf_mode).load(),
# "application/pdf": lambda file: PyPDFLoader(file).load(),
"url": lambda file: WebBaseLoader(file).load(),
"url": lambda file: splitter_func(WebBaseLoader(file).load()),
}
# docs = PyPDFLoader(paths[0]).load()
@ -92,7 +108,7 @@ def main():
# detect filetype
else:
mimetype, _ = mimetypes.guess_type(path)
if mimetype.startswith("text/"):
if (mimetype or "").startswith("text/"):
mimetype = "text"
if mimetype not in loaders:
@ -101,19 +117,14 @@ def main():
if args.v: print(">>> Loading %s as %s" % (path, mimetype), file=stderr)
docs.extend(loaders[mimetype](path))
splits = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
).split_documents(docs)
if args.v: print(">>> Split %d documents into %d chunks" % (len(docs), len(splits)), file=stderr)
# vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings(openai_api_key=APIKeys.openai))
# vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings(openai_api_key=APIKeys.openai))
vectorstore = InMemoryVectorStore(
embedding=OllamaEmbeddings(model='nomic-embed-text')
)
vectorstore.add_documents(splits)
if args.v: print(">>> Vectorized %d chunks" % len(splits), file=stderr)
vectorstore.add_documents(docs)
if args.v: print(">>> Vectorized %d chunks" % len(docs), file=stderr)
simple_retriever = vectorstore.as_retriever()
retriever = MultiQueryRetriever.from_llm(
@ -140,12 +151,11 @@ def main():
("human", "{input}"),
]
)
history_aware_retriever = create_history_aware_retriever(
llm, retriever, contextualize_q_prompt
)
if args.v: print(">>> Created history-aware retriever", file=stderr)
#
@ -159,7 +169,7 @@ def main():
"\n\n"
"{context}"
)
qa_prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
@ -203,11 +213,11 @@ def main():
app = workflow.compile(checkpointer=memory)
if args.v: print(">>> Created app memory\n", file=stderr)
#
# Chat
#
config = {"configurable": {"thread_id": "abc123"}}
config: RunnableConfig = {"configurable": {"thread_id": "abc123"}}
while True:
try:
@ -223,9 +233,9 @@ def main():
# This state has the same input and output keys as `rag_chain`.
class State(TypedDict):
input: str
chat_history: Annotated[Sequence[BaseMessage], add_messages]
context: str
answer: str
chat_history: NotRequired[Annotated[Sequence[BaseMessage], add_messages]]
context: NotRequired[str]
answer: NotRequired[str]
def parse_markdown(text):
lines = text.splitlines()
@ -243,26 +253,23 @@ def parse_markdown(text):
# Check for headers
if line.startswith("# "):
level = len(line) - len(line.lstrip("#"))
header_text = line.strip() #.lstrip("#").strip()
header_text = line.lstrip("#").strip()
formatted_text += colored(header_text, "blue", attrs=["bold", "underline"]) + "\n"
continue
if line.startswith("## "):
level = len(line) - len(line.lstrip("#"))
header_text = line.strip() #.lstrip("#").strip()
header_text = line.lstrip("#").strip()
formatted_text += colored(header_text, "blue", attrs=["bold"]) + "\n"
continue
if line.startswith("### "):
level = len(line) - len(line.lstrip("#"))
header_text = line.strip() #.lstrip("#").strip()
header_text = line.lstrip("#").strip()
formatted_text += colored(header_text, "cyan", attrs=["bold"]) + "\n"
continue
# Check for blockquotes
if line.startswith(">"):
quote_text = line.strip() #.lstrip(">").strip()
quote_text = line.lstrip(">").strip()
formatted_text += colored(quote_text, "yellow") + "\n"
continue