added splitting options
This commit is contained in:
parent
cf4fdb6fb2
commit
91241a597b
87
ragger.py
87
ragger.py
|
|
@ -12,20 +12,20 @@ import re
|
|||
import readline
|
||||
|
||||
from argparse import ArgumentParser
|
||||
from langchain import hub
|
||||
# from langchain import hub
|
||||
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
|
||||
from langchain.chains.combine_documents import create_stuff_documents_chain
|
||||
from langchain.retrievers.multi_query import MultiQueryRetriever
|
||||
from langchain_community.chat_message_histories import SQLChatMessageHistory
|
||||
# from langchain_community.chat_message_histories import SQLChatMessageHistory
|
||||
from langchain_community.document_loaders import TextLoader, WebBaseLoader #, PyPDFLoader
|
||||
from langchain_pymupdf4llm import PyMuPDF4LLMLoader
|
||||
from langchain_core import vectorstores
|
||||
from langchain_core.documents import Document
|
||||
# from langchain_core import vectorstores
|
||||
# from langchain_core.documents import Document
|
||||
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
# from langchain_core.output_parsers import StrOutputParser
|
||||
from langchain_core.prompts import MessagesPlaceholder, ChatPromptTemplate
|
||||
from langchain_core.runnables import RunnablePassthrough
|
||||
from langchain_core.runnables.history import RunnableWithMessageHistory
|
||||
from langchain_core.runnables import RunnableConfig #, RunnablePassthrough
|
||||
# from langchain_core.runnables.history import RunnableWithMessageHistory
|
||||
from langchain_core.vectorstores import InMemoryVectorStore
|
||||
# from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
||||
from langchain_ollama import OllamaEmbeddings, ChatOllama
|
||||
|
|
@ -35,7 +35,7 @@ from langgraph.graph import START, StateGraph
|
|||
from langgraph.graph.message import add_messages
|
||||
from sys import stderr
|
||||
from termcolor import colored
|
||||
from typing import Sequence
|
||||
from typing import NotRequired, Sequence
|
||||
from typing_extensions import Annotated, TypedDict
|
||||
from urllib.parse import urlparse
|
||||
from termcolor import colored
|
||||
|
|
@ -56,6 +56,11 @@ def main():
|
|||
help="select language model to use",
|
||||
default="gpt-oss"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-s",
|
||||
help="don't split documents",
|
||||
action="store_true"
|
||||
)
|
||||
args, paths = parser.parse_known_args()
|
||||
|
||||
#
|
||||
|
|
@ -68,12 +73,23 @@ def main():
|
|||
#
|
||||
# load documents
|
||||
#
|
||||
|
||||
|
||||
splitter_func = lambda docs: docs
|
||||
if not args.s:
|
||||
splitter = RecursiveCharacterTextSplitter(
|
||||
chunk_size=1000,
|
||||
chunk_overlap=200
|
||||
)
|
||||
splitter_func = lambda docs: splitter.split_documents(docs)
|
||||
|
||||
|
||||
if args.s: pdf_mode = 'single'
|
||||
else: pdf_mode = 'page'
|
||||
loaders = {
|
||||
"text": lambda file: TextLoader(file).load(),
|
||||
"application/pdf": lambda file: PyMuPDF4LLMLoader(file).load(),
|
||||
"text": lambda file: splitter_func(TextLoader(file).load()),
|
||||
"application/pdf": lambda file: PyMuPDF4LLMLoader(file, mode=pdf_mode).load(),
|
||||
# "application/pdf": lambda file: PyPDFLoader(file).load(),
|
||||
"url": lambda file: WebBaseLoader(file).load(),
|
||||
"url": lambda file: splitter_func(WebBaseLoader(file).load()),
|
||||
}
|
||||
|
||||
# docs = PyPDFLoader(paths[0]).load()
|
||||
|
|
@ -92,7 +108,7 @@ def main():
|
|||
# detect filetype
|
||||
else:
|
||||
mimetype, _ = mimetypes.guess_type(path)
|
||||
if mimetype.startswith("text/"):
|
||||
if (mimetype or "").startswith("text/"):
|
||||
mimetype = "text"
|
||||
|
||||
if mimetype not in loaders:
|
||||
|
|
@ -101,19 +117,14 @@ def main():
|
|||
if args.v: print(">>> Loading %s as %s" % (path, mimetype), file=stderr)
|
||||
docs.extend(loaders[mimetype](path))
|
||||
|
||||
splits = RecursiveCharacterTextSplitter(
|
||||
chunk_size=1000,
|
||||
chunk_overlap=200
|
||||
).split_documents(docs)
|
||||
if args.v: print(">>> Split %d documents into %d chunks" % (len(docs), len(splits)), file=stderr)
|
||||
|
||||
# vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings(openai_api_key=APIKeys.openai))
|
||||
|
||||
# vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings(openai_api_key=APIKeys.openai))
|
||||
|
||||
vectorstore = InMemoryVectorStore(
|
||||
embedding=OllamaEmbeddings(model='nomic-embed-text')
|
||||
)
|
||||
vectorstore.add_documents(splits)
|
||||
if args.v: print(">>> Vectorized %d chunks" % len(splits), file=stderr)
|
||||
vectorstore.add_documents(docs)
|
||||
if args.v: print(">>> Vectorized %d chunks" % len(docs), file=stderr)
|
||||
|
||||
simple_retriever = vectorstore.as_retriever()
|
||||
retriever = MultiQueryRetriever.from_llm(
|
||||
|
|
@ -140,12 +151,11 @@ def main():
|
|||
("human", "{input}"),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
|
||||
|
||||
history_aware_retriever = create_history_aware_retriever(
|
||||
llm, retriever, contextualize_q_prompt
|
||||
)
|
||||
|
||||
if args.v: print(">>> Created history-aware retriever", file=stderr)
|
||||
|
||||
#
|
||||
|
|
@ -159,7 +169,7 @@ def main():
|
|||
"\n\n"
|
||||
"{context}"
|
||||
)
|
||||
|
||||
|
||||
qa_prompt = ChatPromptTemplate.from_messages(
|
||||
[
|
||||
("system", system_prompt),
|
||||
|
|
@ -203,11 +213,11 @@ def main():
|
|||
app = workflow.compile(checkpointer=memory)
|
||||
|
||||
if args.v: print(">>> Created app memory\n", file=stderr)
|
||||
|
||||
|
||||
#
|
||||
# Chat
|
||||
#
|
||||
config = {"configurable": {"thread_id": "abc123"}}
|
||||
config: RunnableConfig = {"configurable": {"thread_id": "abc123"}}
|
||||
|
||||
while True:
|
||||
try:
|
||||
|
|
@ -223,9 +233,9 @@ def main():
|
|||
# This state has the same input and output keys as `rag_chain`.
|
||||
class State(TypedDict):
|
||||
input: str
|
||||
chat_history: Annotated[Sequence[BaseMessage], add_messages]
|
||||
context: str
|
||||
answer: str
|
||||
chat_history: NotRequired[Annotated[Sequence[BaseMessage], add_messages]]
|
||||
context: NotRequired[str]
|
||||
answer: NotRequired[str]
|
||||
|
||||
def parse_markdown(text):
|
||||
lines = text.splitlines()
|
||||
|
|
@ -243,26 +253,23 @@ def parse_markdown(text):
|
|||
|
||||
# Check for headers
|
||||
if line.startswith("# "):
|
||||
level = len(line) - len(line.lstrip("#"))
|
||||
header_text = line.strip() #.lstrip("#").strip()
|
||||
header_text = line.lstrip("#").strip()
|
||||
formatted_text += colored(header_text, "blue", attrs=["bold", "underline"]) + "\n"
|
||||
continue
|
||||
|
||||
|
||||
if line.startswith("## "):
|
||||
level = len(line) - len(line.lstrip("#"))
|
||||
header_text = line.strip() #.lstrip("#").strip()
|
||||
header_text = line.lstrip("#").strip()
|
||||
formatted_text += colored(header_text, "blue", attrs=["bold"]) + "\n"
|
||||
continue
|
||||
|
||||
|
||||
if line.startswith("### "):
|
||||
level = len(line) - len(line.lstrip("#"))
|
||||
header_text = line.strip() #.lstrip("#").strip()
|
||||
header_text = line.lstrip("#").strip()
|
||||
formatted_text += colored(header_text, "cyan", attrs=["bold"]) + "\n"
|
||||
continue
|
||||
|
||||
# Check for blockquotes
|
||||
if line.startswith(">"):
|
||||
quote_text = line.strip() #.lstrip(">").strip()
|
||||
quote_text = line.lstrip(">").strip()
|
||||
formatted_text += colored(quote_text, "yellow") + "\n"
|
||||
continue
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue