initial commit

This commit is contained in:
Ian Griffin 2024-10-28 10:46:26 +08:00
commit 55b5bc7081
6 changed files with 332 additions and 0 deletions

2
.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
old.py
__pycache__

23
README.md Normal file
View File

@ -0,0 +1,23 @@
Ragger
======
## Description
```ragger.py``` is a command line tool to RAG over multiple pieces text, PDFs and websites using langchain and OpenAI.
## Prerequisites
Since this codebase uses OpenAI models, a OpenAI API key is needed.
After obtaining an API key, set the environment variable OPENAI_API_KEY to the API key.
## Installation
This program can be installed by cloning the repository and installing the package using pip:
```bash
git clone https://github.com/your_username/your_repository.git
cd ragger
pip install .
```
## Usage
To use the `ragger` command, open a terminal and run:
```bash
ragger file_1_path.pdf file_2_path.txt https://url_1_path.net
```

253
ragger.py Executable file
View File

@ -0,0 +1,253 @@
#!/usr/bin/env python3
import os
import mimetypes
import re
from argparse import ArgumentParser
from langchain import hub
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.retrievers.multi_query import MultiQueryRetriever
from langchain_community.chat_message_histories import SQLChatMessageHistory
from langchain_community.document_loaders import PyPDFLoader, TextLoader, WebBaseLoader
from langchain_core import vectorstores
from langchain_core.documents import Document
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import MessagesPlaceholder, ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_core.vectorstores import InMemoryVectorStore
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import START, StateGraph
from langgraph.graph.message import add_messages
from sys import stderr
from termcolor import colored
from typing import Sequence
from typing_extensions import Annotated, TypedDict
from urllib.parse import urlparse
from termcolor import colored
def parse_markdown(text):
lines = text.splitlines()
formatted_text = ""
in_code_block = False
for line in lines:
# Check for code blocks
if line.startswith("```"):
in_code_block = not in_code_block
continue # Skip the line with ```
elif in_code_block:
formatted_text += colored(line + "\n", "green")
continue
# Check for headers
if line.startswith("#"):
level = len(line) - len(line.lstrip("#"))
header_text = line.lstrip("#").strip()
formatted_text += colored(header_text, "blue", attrs=["bold"]) + "\n"
continue
# Check for blockquotes
if line.startswith(">"):
quote_text = line.lstrip(">").strip()
formatted_text += colored(quote_text, "yellow") + "\n"
continue
# Check for tables (rows separated by "|")
if "|" in line:
table_row = "\t".join(line.split("|")).strip()
formatted_text += table_row + "\n"
continue
# Inline formatting for bold, italic, and code
# Bold (**text** or __text__)
line = re.sub(r"\*\*(.*?)\*\*|__(.*?)__", lambda m: colored(m.group(1) or m.group(2), attrs=["bold"]), line)
# Italic (*text* or _text_)
line = re.sub(r"\*(.*?)\*|_(.*?)_", lambda m: colored(m.group(1) or m.group(2), attrs=["underline"]), line)
# Inline code (`code`)
line = re.sub(r"`(.*?)`", lambda m: colored(m.group(1), "green"), line)
# List items (bullets and numbers)
# Bulleted list
line = re.sub(r"^(\s*[-*])\s", lambda m: colored(m.group(1), "cyan") + " ", line)
# Numbered list
line = re.sub(r"^(\s*\d+\.)\s", lambda m: colored(m.group(1), "cyan") + " ", line)
# Add processed line to formatted text
formatted_text += line + "\n"
return formatted_text
class State(TypedDict):
input: str
chat_history: Annotated[Sequence[BaseMessage], add_messages]
context: str
answer: str
if __name__ == "__main__":
#
# Parse Arguments
#
parser = ArgumentParser()
parser.add_argument("-v", help="increase output verbosity", action="store_true")
parser.add_argument("-m", type=str, help="select OpenAI model to use", default="gpt-3.5-turbo")
args, paths = parser.parse_known_args()
#
# load LLM
#
llm = ChatOpenAI(model=args.m)
if args.v:
print(">>> Loaded LLM: %s" % llm, file=stderr)
#
# load documents
#
loaders = {
"text/plain": lambda file: TextLoader(file).load(),
"application/pdf": lambda file: PyPDFLoader(file).load(),
"url": lambda file: WebBaseLoader(file).load(),
}
# docs = PyPDFLoader(paths[0]).load()
docs = []
for path in paths:
# check if url:
if urlparse(path).scheme in ("http", "https"):
if args.v:
print(">>> Loading %s as %s" % (path, "url"), file=stderr)
docs.extend(loaders["url"](path))
# check if file exists:
elif not os.path.exists(path):
raise FileNotFoundError("%s not found" % path)
# detect filetype
else:
mimetype, _ = mimetypes.guess_type(path)
if mimetype not in loaders:
raise ValueError("Unsupported file type: %s" % mimetype)
else:
if args.v:
print(">>> Loading %s as %s" % (path, mimetype), file=stderr)
docs.extend(loaders[mimetype](path))
splits = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200).split_documents(docs)
if args.v:
print(">>> Split %d documents into %d chunks" % (len(docs), len(splits)), file=stderr)
# vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings(openai_api_key=APIKeys.openai))
vectorstore = InMemoryVectorStore(embedding=OpenAIEmbeddings())
vectorstore.add_documents(splits)
if args.v:
print(">>> Vectorized %d chunks" % len(splits), file=stderr)
simple_retriever = vectorstore.as_retriever()
retriever = MultiQueryRetriever.from_llm(retriever=simple_retriever, llm=llm)
if args.v:
print(">>> Created retriever", file=stderr)
#
# History Prompt
#
contextualize_q_system_prompt = (
"Given a chat history and the latest user question "
"which might reference context in the chat history, "
"formulate a standalone question which can be understood "
"without the chat history. Do NOT answer the question, "
"just reformulate it if needed and otherwise return it as is."
)
contextualize_q_prompt = ChatPromptTemplate.from_messages(
[
("system", contextualize_q_system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
]
)
history_aware_retriever = create_history_aware_retriever(
llm, retriever, contextualize_q_prompt
)
if args.v:
print(">>> Created history-aware retriever", file=stderr)
#
# Prompt
#
system_prompt = (
"You are an assistant for question-answering tasks. "
"Use the following pieces of retrieved context to answer "
"the question. If you don't know the answer, say that you "
"don't know. Answer as detailed and easy to understand as possible."
"\n\n"
"{context}"
)
qa_prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
]
)
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
if args.v:
print(">>> Created RAG chain", file=stderr)
#
# Memory
#
# We then define a simple node that runs the `rag_chain`.
# The `return` values of the node update the graph state, so here we just
# update the chat history with the input message and response.
def call_model(state: State):
response = rag_chain.invoke(state)
return {
"chat_history": [
HumanMessage(state["input"]),
AIMessage(response["answer"]),
],
"context": response["context"],
"answer": response["answer"],
}
# Our graph consists only of one node:
workflow = StateGraph(state_schema=State)
workflow.add_edge(START, "model")
workflow.add_node("model", call_model)
# Finally, we compile the graph with a checkpointer object.
# This persists the state, in this case in memory.
memory = MemorySaver()
app = workflow.compile(checkpointer=memory)
if args.v:
print(">>> Created app memory\n", file=stderr)
#
# Chat
#
config = {"configurable": {"thread_id": "abc123"}}
while True:
try:
question = input(colored("Q: ", "yellow", attrs=["reverse"]))
except EOFError:
print()
break
print(colored("A: ", "green", attrs=["reverse"]), parse_markdown(app.invoke({"input": question},
config=config)["answer"]), end="\n\n")

12
requirements.txt Normal file
View File

@ -0,0 +1,12 @@
bs4
gradio
huggingface_hub
langchain
langchain-chroma
langchain-community
langchain-openai
langgraph
openai
pypdf==5.0.1
termcolor
tiktoken

29
setup.py Normal file
View File

@ -0,0 +1,29 @@
from setuptools import setup, find_packages
setup(
name='my_awesome_package',
version='0.1',
packages=find_packages(),
package_data={
'my_package': ['*.py', '!old.py']
},
entry_points={
'console_scripts': [
'ragger = my_package.ragger:main'
],
},
install_requires=[
'bs4'
'gradio'
'huggingface_hub'
'langchain'
'langchain-chroma'
'langchain-community'
'langchain-openai'
'langgraph'
'openai'
'pypdf==5.0.1'
'termcolor'
'tiktoken'
],
)

13
todo.txt Normal file
View File

@ -0,0 +1,13 @@
x setup setup.py
better code structure
huggingface models availability
initial question argument
no looping argument
toggle rich text
UI
x setup arguments
x rich text
x multi-query retriever
x add verbose argument
x add model argument
x multi pdf